

Levin-Richmond Terminal Corporation

402 Wright Avenue, Richmond, California 94804 Tel. (510) 307-4000 / Fax. (510) 236-0129

September 23, 2020

Ms. Karen Jurist
United States Environmental Protection Agency Region 9
75 Hawthorne Street
San Francisco, California 94105
Via email: jurist.karen@epa.gov

RE: 2019-2020 Annual Report, United Heckathorn Superfund Site, Upland Capping System

Richmond, California

Dear Ms. Jurist:

Enclosed please find the 2019-2020 Annual Report for the Upland Capping System at the United Heckathorn Superfund Site.

Please feel free to contact me if you have any questions or concerns with the attached report.

Sincerely,

Jim Holland

Vice President of Facilities, Equipment, and Environmental Officer

Levin Richmond Terminal Corporation

(510) 307-4076

Enclosure: 2019-2020 Annual Report for United Heckathorn Superfund Site Upland Capping System

45 Polk Street, 3rd Floor • San Francisco, California 94102 • 415.498.0535 • cdimengineering.com

2019-2020 Annual Report

United Heckathorn Superfund Site Upland Capping System Richmond, California

September 8, 2020 Rev. 0

prepared for:

Levin Richmond Terminal Corporation 402 Wright Avenue Richmond, California 94804

prepared by:

CDIM Engineering, Inc.45 Polk Street, 3rd Floor
San Francisco, California 94102

45 Polk Street, 3rd Floor • San Francisco, California 94102 • 415.498.0535 • cdimengineering.com

2019-2020 Annual Report

United Heckathorn Superfund Site Upland Capping System Richmond, California

September 8, 2020 Rev. 0

prepared by:

CDIM Engineering, Inc. 45 Polk Street, 3rd Floor San Francisco, CA 94102

CDIM's work for the Levin Richmond Terminal Corporation was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate, are based on what can be reasonably understood as a result of this project, and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications, or professional opinions were prepared solely for the use of the Levin Richmond Terminal Corporation in accordance with generally accepted processional engineering and geologic practice. We make no other warranty, either expressed or implied, and are not responsible for the interpretation by others of the contents herein.

Scott Bourne, PE #C72817 Principal Engineer September 8, 2020

Date

TABLE OF CONTENTS

1	INTRO	DUCTION	ON	1
	1.1	Backg	round	1
	1.2	Progra	am Objectives	2
	1.3	Opera	ition and Maintenance Program	2
	1.4	Conte	nts of this Report	2
2	SITE D	ESCRI	PTION	3
	2.1	Uplan	d Area Description and Current Use	3
	2.2	Nearb	y Water Bodies	3
	2.3	Uplan	d Area Cap	3
	2.4	Storm	Water Collection and Advanced Treatment	3
3	OPER	ATION A	AND MAINTENANCE	5
	3.1	Uplan	d Cap Maintenance	5
	3.2	Storm	Water Collection System Inspection and Cleaning	5
	3.3	Storm	Water Monitoring	5
		3.3.1	Storm Water Sampling	6
		3.3.2	•	6
		3.3.3		7
		3.3.4	Assessment of Results	7
	3.4	Storm	Water Treatment System Operation	7
	3.5	Sheet	Pile Seep Sampling	8
		3.5.1	Seep Observations, Sampling, and Irrigation Repair	8
		3.5.2	•	8
		3.5.3	Response Action	9
4	ANNU	AL SITE	E INSPECTION	10
	4.1	Concr	ete Cap Inspection	10
	4.2	Grave	l Cover Inspection	10
	4.3	Trienn	nial Upland Cap Survey	11
5	PROP	OSED S	SITE WORK FOR 2020-2021	12
6	CONC	LUSION	NS AND RECOMMENDATIONS	13
7	REFF	RENCES	S	14

TABLES

Table 1	2019-2020 Annual Storm Water Sampling Data for Pesticides
Table 2	2019-2020 Annual Storm Water Sampling Data for General Parameters and Metals
Table 3	Seep Sample Results for Pesticides
Table 4	Seep Pesticide Mass Discharge Estimate
Table 5	Proposed Site Work for 2020-2021

FIGURES

Figure 1

Figure 2	Site Layout
Figure 3	Upland Capping System Details
Figure 4	Seep Location
Figure 5	Total DDT in Stormwater, 2015-2020, Treatment System TS-2
Figure 6	Dieldrin in Stormwater, 2015-2020, Treatment System TS-2

Site Location Map

APPENDICES

Appendix A	Upland Capping System Inspection Photographs
Appendix B	Laboratory Analytical Reports
Appendix C	Upland Capping System Inspection Form
Appendix D	Upland Cap Survey Plat

ACRONYMS AND ABBREVIATIONS

BMP best management practices

CDIM Engineering, Inc.

DDD dichlorodiphenyldichloroethane

DDE dichlorodiphenyldichloroethene

DDT dichlorodiphenyltrichloroethane

EPA United States Environmental Protection Agency

gpm gallons per minute

Heckathorn Site or Site United Heckathorn Superfund Site

IGP Storm Water Industrial General Permit

LRT Levin Richmond Terminal

LRTC Levin Richmond Terminal Corporation

MDL method detection limit

msl mean sea level

mS/cm milliSiemen per centimeter

NAL numeric action level

NPDES National Pollutant Discharge Elimination System

O&G oil and grease

O&M operations and maintenance

O&M Plan Revised Draft Operations and Maintenance Plan, Upland Capping System,

Former United Heckathorn Site

pg/L picograms per liter

QSE Qualified Storm Event

ROD Record of Decision

SWPPP Storm Water Pollution Prevention Plan

SWRCB State Water Resource Control Board

Third Five-Year Review Report for United Heckathorn Superfund Site,

Richmond, California

TS-2 advanced storm water treatment system TS-2

TSS total suspended solids

1 INTRODUCTION

On behalf of the Levin Richmond Terminal Corporation (LRTC), CDIM Engineering, Inc. (CDIM) has prepared this 2019-2020 Annual Report to describe the inspection, monitoring, and maintenance performed on the upland cap at the United Heckathorn Superfund Site (Heckathorn Site).

1.1 Background

From 1947 through 1966, the Heckathorn Site was used for formulating, processing, packaging, and shipping pesticides including aldrin, dichlorodiphenyltrichloroethane (DDT), dieldrin, and endrin. These activities resulted in the release of pesticides to the surrounding soils and the Lauritzen Channel. In 1994, after remedial investigation and feasibility studies were completed, the United States Environmental Protection Agency (EPA) adopted a Record of Decision (ROD) for remedial action requiring:

- Dredging of all soft bay mud from the Lauritzen Channel and the Parr Canal, with offsite disposal of dredged material;
- · Placement of clean material after dredging;
- Construction of a cap at and around the former Heckathorn facility to prevent erosion;
- A deed restriction limiting the property at the former Heckathorn facility location to nonresidential uses; and,
- Marine monitoring to verify the effectiveness of the remedy (EPA, 1994b).

In 1996, LRTC entered into a Consent Decree¹ with the EPA, which outlined LRTC's responsibility to design, construct, and maintain a concrete cap at and around the former Heckathorn facility to prevent erosion (United States District Court, 1996a). LRTC completed construction of the concrete cap in July 1999 (PES, 1999b).

Since the cap was constructed, EPA has completed four five-year reviews. EPA has found the upland remedial action is functioning as intended, is protective of human health and the environment, and has met the remedial action objective for the upland area by capping of contaminated soils, which has eliminated human exposure pathways and has prevented erosion (EPA, 2016).²

Montrose Chemical Corporation of California, Chris-Craft Industrial, Rhone-Poulenc, Inc. and Stauffer Management Company (collectively the "Montrose Group") entered into a separate Consent Decree with EPA for dredging of young bay mud from the Lauritzen Channel and Parr Canal, with offsite disposal of dredged material and placement of clean fill after dredging (United States District Court, 1996b).

² The 2016 Five Year Review also states (page 34) "Another remedial action objective is to prevent the erosion and transport or upland soils into the Lauritzen Channel. Erosion is occurring only within the marine area – specifically, under the sheet pile along the Lauritzen Channel embankment; no erosion has been observed in the area of the upland cap. This RAO for the upland area has been met." (EPA, 2016).

1.2 Program Objectives

To ensure long-term protection of human health and the environment, the remedial action goal established by the EPA for upland and embankment soils is the prevention of erosion and transport into the Lauritzen Channel (EPA, 1994a).

The upland cap was designed to prevent the release of residual chlorinated pesticides that are present in soils (PES, 1998).

The objective of the cap inspection and storm water monitoring programs is to identify any potential release of pesticide-impacted soil by examining the integrity of the cap system through visual inspection and storm water monitoring (EPA, 2011).

1.3 Operation and Maintenance Program

LRTC performs operations and maintenance (O&M) activities in accordance with the Revised Draft Operations and Maintenance Plan, Upland Capping System, Former United Heckathorn Site (O&M Plan; PES, 1999a). LRTC performs additional O&M activities as recommended by EPA in the Third Five-Year Review Report for United Heckathorn Superfund Site, Richmond, California (Third Five-Year Review; EPA, 2011) to provide added confidence that the upland area remedy maintains its effectiveness.

1.4 Contents of this Report

This Annual Report describes activities performed by LRTC to inspect, monitor and maintain the upland cap for the period of July 1, 2019 to June 30, 2020. Included is a summary of each of the following:

- Capping system maintenance activities;
- Storm water collection system inspection and cleaning;
- Storm water system monitoring;
- Storm water treatment;
- Annual cap inspection;
- Proposed site work for 2020-2021; and,
- A conclusion with CDIM's opinion as to the overall condition and effectiveness of the cap in meeting the program objectives.

2 SITE DESCRIPTION

The Levin Richmond Terminal (LRT) is located at 402 Wright Avenue in Richmond, California and is immediately adjacent to the Lauritzen Channel in the Richmond Harbor (Figure 1). The Heckathorn Site includes the northern five acres of the Main Terminal at LRT, also known as the upland cap area (Figure 2).

2.1 Upland Area Description and Current Use

The upland cap area is bounded by a railroad track and Cutting Boulevard to the north; South Fourth Street to the east; the LRT and Santa Fe Channel to the south; and the Lauritzen Channel to the west. The majority of the upland cap area is relatively flat with surface elevations of approximately 9 feet above mean sea level (msl), with the exception of the upland cap area north of the Lauritzen Channel; this portion was raised to approximately 15 feet above msl during cap construction.

The upland cap area is used primarily for storage of dry bulk product and railroad operations. Photographs taken during the site inspection are included in Appendix A.

2.2 Nearby Water Bodies

The storm water system in the upland cap area discharges directly to the Lauritzen Channel (Figure 2). The Lauritzen Channel is connected to the San Francisco Bay via the Santa Fe Channel and Richmond Inner Harbor.

2.3 Upland Area Cap

Construction of the concrete cap at the upland cap area began in July 1998, and it was completed in July 1999 (PES, 1999b). Installation of the cap consisted of: (1) site grading to promote surface runoff to the collection points; (2) installation of a drainage system to collect surface runoff, including best management practices (BMPs) for storm water pollution prevention; and (3) construction of a reinforced concrete cap in the majority of the 5-acre area and construction of a geotextile fabric and gravel cap in the railroad track area (Figure 2). The concrete cap consists of a minimum 6-inch thick concrete section with a double layer of welded wire fabric reinforcement. The gravel cover consists of a geotextile fabric over a prepared subgrade. The geotextile fabric is covered by a 6-inch layer of gravel.

2.4 Storm Water Collection and Advanced Treatment

The facility is paved with asphalt and concrete and is graded to direct surface water runoff via sheet flow or shallow swales to drop inlets (Figure 3). The drop inlets drain to five below-grade interceptors³ (SW-3 through SW-7) via underground pipe. The interceptors are equipped with compartments and steel baffles to allow the

³ The interceptor design was based on a five-minute retention time during a 10-year, 24-hour storm event (PES, 1999a).

2019-2020 Annual Report United Heckathorn Superfund Site Upland Capping System Richmond, California

settling of sediments and separation of oil/grease and floatables. Each interceptor is also equipped with normally-closed gate valves at the effluent pipe, which can be opened during heavy rains to enable direct discharge to the Lauritzen Channel.

In 2015, LRTC modified⁴ the upland cap area storm water collection system and installed an advanced storm water treatment system TS-2 (TS-2). Single-speed submersible pumps placed into the final chamber of each interceptor were connected to newly installed storm drain pipe along the edge of the LRTC pier. During storm events, the submersible pumps push storm water captured by interceptors SW-3 to SW-7 through an inline static mixer where a biopolymer flocculant is added. Storm water then flows into a series of two 21,000-gallon aboveground clarification tanks, where flocculant and solids separate from the water. Storm water overflows from the second clarifier and is pumped through four, 48-inch diameter sand filters. Effluent from the treatment system then is discharged to the Lauritzen Channel at the interceptor SW-5 outfall. TS-2 is equipped with a variable speed drive for pump control, a programmable logic controller, and a human machine interface.

The estimated flow for the SW-3 to SW-7 catchments that results from a 0.2 inch per hour design storm intensity⁵ is approximately 500 gallons per minute (gpm). TS-2 is designed to treat approximately 650 gpm. Additionally, due to the storage volume provided by interceptors and clarifiers, the system is able to capture and treat periods of storm water flow in excess of 650 gpm before treatment bypass occurs.

⁴ The storm water treatment system was described in the 2014-2015 annual report and a telephone conversation (December 26, 2014) and email correspondence (January 26, 2016) between Rachelle Thompson of EPA and Scott Bourne, formerly of Weiss Associates.

⁵ Design criteria for flow-based treatment established in Industrial General Permit (IGP) (SWRCB, 2014).

3 OPERATION AND MAINTENANCE

This section describes the operation and maintenance activities performed by LRTC for the upland cap at the Heckathorn Site during the 2019-2020 reporting year. These activities included:

- Upland cap maintenance;
- Storm water collection system inspection and cleaning;
- Storm water monitoring;
- · Storm water treatment and operation; and
- · Sheet pile seep sampling.

3.1 Upland Cap Maintenance

During the 2019-2020 reporting year, LRTC monitored the performance of the concrete cap and gravel cover in accordance with recommendations contained in the 2018-2019 Annual Report (CDIM, 2019). LRTC regularly monitored the cap and inspected cracks, seals, and joints for signs of propagation and/or degradation. No evidence of exposed underlying soil was observed. The upland cap functioned as designed, and no major maintenance or repair of the cap was conducted during the current reporting period.

LRTC installed a new drain pipe from existing drain inlet 3DI-105 during the 2019-2020 reporting period. The drain inlet, which is located immediately west of interceptor SW-3, previously drained directly into the interceptor. Approximately 30 linear feet of drain pipe was added inside the interceptor to carry the collected water to the inlet end of the interceptor (Appendix A; Photo 2). This modification was completed to facilitate settlement of sediments in the storm water prior to the storm water reaching the pumps that transfer water to water treatment TS-2.

LRTC also installed new concrete landscaping planters at the Site during the 2019-2020 reporting period, including one planter located north of treatment system TS-2 that replaced a previously graveled area. Locations of the concrete planters are shown on Figure 3.

3.2 Storm Water Collection System Inspection and Cleaning

LRTC inspected the storm drain inlets, interceptors and clarifier tanks prior to the 2019-2020 rainy season and monthly throughout the reporting year per its Storm Water Pollution Prevention Plan (SWPPP; CDIM, 2019a). Storm water interceptors and the clarifier tanks were cleaned before the start of the rainy season. Drain inlets and inlet filters were cleaned and replaced as-needed throughout the year.

3.3 Storm Water Monitoring

The objective of the storm water monitoring program is to verify the cap is effectively preventing erosion, reducing the potential for storm water contact with soils containing residual pesticides and reducing the potential

for release of residual pesticides to the Lauritzen Channel. This section describes the storm water sampling, results, and quality assurance/quality control procedures. It also includes an assessment of the results.

3.3.1 Storm Water Sampling

LRTC sampled industrial storm water discharges in accordance with State Water Resources Control Board (SWRCB) Water Quality Order No. 2014-0057-DWQ, National Pollutant Discharge Elimination System (NPDES) General Permit No. CAS000001, *General Permit for Storm Water Discharges Associated with Industrial Activities* (IGP; SWRCB, 2014) and the O&M Plan (PES, 1999a). Storm water monitoring requirements are documented in LRTC's SWPPP.

Prior to 2015, LRTC collected samples from interceptors SW-3 through SW-7. Since installing advanced treatment system TS-2, LRTC no longer regularly discharges storm water at these locations. As a result, LRTC now collects storm water samples from the TS-2 influent and effluent.⁶ In the event that elevated pesticides are detected in the TS-2 influent or effluent, LRTC is prepared to sample at interceptors SW-3 through SW-7.

Storm water samples were submitted to Vista Analytical in El Dorado Hills, California for pesticide analysis by EPA Method 1699. Storm water samples were submitted to Pace Analytical National Laboratories in Mount Juliet, Tennessee for the following analyses: pH by Standard Method 4500HB, total suspended solids (TSS) by Standard Method 2540D, oil and grease (O&G) by EPA 1644A, and metals by EPA Method 200.8. Original laboratory reports, including applicable chain-of-custody forms, are included in Appendix B.⁷

3.3.2 Sample Results

During the 2019-2020 reporting year, storm water from the combined TS-2 influent and effluent was sampled during three storm events: December 7, 2019; December 18, 2019; and January 16, 2020.8

3.3.2.1 Effluent Sample Results

Tables 1 and 2 show laboratory analytical results for pesticides and general parameters/metals, respectively. Pesticides were detected in the treated storm water discharge samples (TS2-E) from each of the three storm events sampled during the 2019-2020 reporting year. Total DDT⁹ was detected at concentrations ranging from 330 to 6,409 picograms per liter (pg/L); dieldrin was detected at concentrations ranging from 556 to 835 pg/L. TS-2 discharge results for all other pollutants (metals, O&G pH and TSS) were below the numeric action levels (NALs; State Water Resources Control Board, 2014) during the 2019-2020 reporting year.

⁶ Changes to storm water monitoring was discussed during a telephone conversation on November 3, 2015 between Rachelle Thompson of EPA and Scott Bourne formerly of Weiss Associates.

⁷ Laboratory analytical reports include data for LRT storm water discharge points that are not located in the upland cap area (TS1-E, TS3-E, TS4-E).

⁸ LRTC is eligible for and has elected to implement a Sampling Frequency Reduction under the IGP. Beginning in January 2020 and until such a time when LRTC is no longer eligible, or if requested by EPA, storm water sampling will be performed twice per reporting year.

⁹ Total DDT represents the sum of detected concentrations of 4,4' and 2,4'- isomers of DDT, DDD, and DDE and/or the detection limits for non-detected compounds.

3.3.2.2 Influent Sample Results

Samples of the combined influent to TS-2 (TS2-I) were collected during each of the three storm events. Influent samples were composited using the SW-3, SW-4, and the combined SW-5/6/7 influent feeds; volume from each feed was calculated based on the estimated runoff contribution to TS-2 discharge. Total DDT was detected in the influent at concentrations ranging from 21,052 to 50,659 pg/L; dieldrin was detected at concentrations ranging from 1,100 to 2,930 pg/L.

3.3.3 Quality Assurance/Quality Control

The O&M Plan stipulates that at least one duplicate sample be collected for analysis by EPA Method 8080 per storm sampling event. However, due to the change to EPA Method 1699, it was determined that a duplicate pesticide sample was no longer necessary. EPA Method 1699 employs high-resolution gas chromatography/high-resolution mass spectrometry with isotope dilution and internal standard quantification techniques to provide improved sensitivity and data quality. In future years, a duplicate sample can be collected upon EPA request.

Laboratory method detection limits (MDLs) for each DDT isomer, and the sum of the MDLs for all DDT isomers, were below the total DDT final surface water remediation level of 590 pg/L established in the ROD (EPA, 1994b) for all events. The MDL for dieldrin was below the final surface water remediation level of 140 pg/L.

No data quality issues were reported through the data validation process. Based on the data validation process, the data resulting from sampling and analysis are acceptable and complete.

3.3.4 Assessment of Results

Pesticides were detected in all TS-2 influent and effluent samples during the 2019-2020 reporting year. Total DDT was detected in one of the three effluent samples at concentrations above the surface water remediation level of 590 pg/L. Dieldrin was detected in all three effluent samples at concentrations above the surface water remediation level of 140 pg/L. Figures 4 and 5 present trend charts showing influent and effluent DDT and dieldrin concentrations from October 2015 to present, ¹⁰ including detected concentrations and MDLs when pesticides were not detected. ¹¹ Sample results from the 2019-2020 reporting year show that TS-2 is effective at reducing concentrations of total DDT, dieldrin, TSS and metals. While concentrations show a relatively high degree of variability within a rain year and between rain years, both influent and effluent concentrations in 2019-2020 reporting year were generally consistent with concentrations from previous years.

3.4 Storm Water Treatment System Operation

LRT received approximately 11.3 inches of rainfall¹² during the 2019-2020 reporting period. According to the LRTC, TS-2 provided sufficient treatment capacity to prevent treatment system bypass for all time periods when its operation was observed. No significant operation and maintenance concerns were encountered.

¹⁰ Concentration trend charts for DDT and dieldrin for individual storm water discharge locations from 2011 to 2015 are contained in the 2014-2015 Annual Report (Weiss, 2015).

¹¹ Denoted by "<n", where n is MDL, if available, or reporting limit otherwise.

¹² Rainfall from LRTC rain gauge.

3.5 Sheet Pile Seep Sampling

During low tide on or around April 13, 2020, LRTC staff observed water seepage to the Lauritzen Channel from the sheet pile wall to the south of stormwater interceptor SW-6.¹³ Figure 4 shows location of the observed water seepage. Photographs of the seepage and sampling are contained in Appendix A. Due to its location, LRTC requested that CDIM sample the seepage water for pesticide analysis.

3.5.1 Seep Observations, Sampling, and Irrigation Repair

CDIM visually observed and sampled the water seepage during a low tide event on April 16, 2020. At the time of sampling, the seep discharge rate was estimated to be two liters per minute and the electrical conductivity was measured at 0.14 milli Siemens per centimeter (mS/cm) for the seepage water and 35 mS/cm for nearby water in the Lauritzen Channel. CDIM shipped the seepage water sample under chain-of-custody to Vista Analytical for organochlorine pesticide analysis by EPA Method 1699. Results for both filtered and unfiltered sample analyses are provided in the attached Table 3. Laboratory analytical reports are included in Appendix B.

After receipt of laboratory results, CDIM revisited the Site on May 11, 2020 during a very low tide event. Two additional areas of water seepage were observed in the same vicinity. ¹⁴ CDIM also identified puddling near an irrigation pipe box along Fourth Street directly east of the observed seepage, along the eastern boundary of the upland cap.

LRTC shut off water flow at the irrigation box on May 11, 2020 and performed repairs. LRTC found that tree roots appear to have separated irrigation piping in the box. Once repairs were made, water seepage along the shoreline quickly diminished and ceased on or around May 13, 2020. CDIM revisited the Site during low tide ¹⁵ on June 8, 2020 and confirmed that the previously identified seeps had ceased. Another potential very low flow seep was noted adjacent to the City of Richmond outfall at this time. The measured conductivity of the seepage water was 1.8 mS/cm. The observed seepage appears to be tidal wash or a groundwater seep due to its low flow rate, different location, conductivity, and low elevation (-0.5 feet).

3.5.2 Seep Results and Discussion

The concentrations of Total DDT in the original unfiltered and filtered seep samples were 0.32 ug/L and 0.20 ug/L, respectively. High concentrations of other pesticides (e.g., endrin and related compounds) were also detected. Unfiltered groundwater concentrations at the Heckathorn Site reported in the 2014 Source Identification Report (CH2M Hill, 2014) range from 0.27 to 69.6 ug/L, and filtered concentrations range from 0.030 to 14.6 ug/L. Based on this data, the measured seep pesticide and electrical conductivity, as well as the observation of the

¹³ Seepage located at the following coordinates: 37.9243078047776, -122.366424112525 (latitude, longitude) as measured with a high resolution differential global position system device.

¹⁴ Additional seeps located at: 37.9243260033518, -122.366419505964 and 37.9245742686702, -122.366487191326

¹⁵ CDIM inspected for seeps between 8:30 AM and 9:30 AM; low tide for the Richmond Inner Harbor was -1.3 feet at 8:39 AM.

2019-2020 Annual Report United Heckathorn Superfund Site Upland Capping System Richmond, California

leaking irrigation line, the observed seepage water appears to have been a combination of tidewater, groundwater and irrigation water.

CDIM prepared an order of magnitude estimate of the total pesticide mass discharged from the three observed seeps into the Lauritzen Channel. The estimates were calculated using the observed discharge rate at the seep during sampling on April 16, 2020, a total of three seeps, and a conservatively estimated seep duration of 90 days. Results of the estimates are provided in Table 4. An order of magnitude estimate of 0.000244 pounds (lbs) of DDT may have been discharged from the seeps to the Lauritzen.

3.5.3 Response Action

LRTC has inventoried and added routine inspection of irrigation boxes along the Fourth Street and in other locations near the Upland Cap to its environmental inspection protocol. Additionally, LRTC will periodically visually inspect the shoreline during low tide events for evidence of seepage.

4 ANNUAL SITE INSPECTION

Representatives of LRTC and CDIM inspected the upland cap on May 29, 2020. The inspection included visual observations of the concrete cap, gravel cover, and drainage system throughout the observable extent of the upland cap area. Appendix A includes photographs taken during the inspections. Figure 3 shows the locations of the photographs. Appendix C includes the inspection form.

4.1 Concrete Cap Inspection

Visual inspections concentrated on identifying signs of deterioration and exposure of the underlying subgrade at cracks, joints, high-loading areas, gravel and cap penetrations. Areas identified in the Fourth Five-Year Review (EPA, 2016) and the 2018-2019 Annual Report (CDIM, 2019) with cracks and potential settlement were reexamined.

- **SW-3 Area** No significant cracks or deterioration were noted in the paved SW-3 Area (Appendix A; Photos 2 and 15). The gravel cover along the east border of the property was in good condition (Appendix A; Photo 6).
- **SW-4 Area** Minor surficial cracks and seams were observed in the bulk product storage area (Appendix A; Photos 3, 4 and 5).
- **SW-5 Area** No significant cracks or deterioration noted in the SW-5 Area, and previous repairs remain in good condition (Appendix A; Photos 1 and 7).
- **SW-6 Area** No significant cracks or deterioration were noted in the concrete in the SW-6 Area (Appendix A; Photos 8 and 9). Gravel cover in this area was found to be in good condition (Appendix A; Photos 12, 13, and 14).
- **SW-7 Area** No significant cracks or deterioration were noted in the concrete in the SW-7 Area (Appendix A; Photos 10 and 16). Shotcrete applied to the northern shoreline of the Lauritzen Channel appeared to be in good condition (Appendix A; Photo 11).

No evidence of differential settling or vertical displacement was observed across the cap. No evidence of cracks, gaps, significant cap deterioration, or other material breach with apparent potential for exposure of the underlying subgrade was observed during the inspection. CDIM recommends that LRTC continue to monitor the cap for signs of deterioration.

4.2 Gravel Cover Inspection

Visual observations of the gravel cover concentrated on identifying areas where the gravel cover was thin. A geotextile membrane underlies the gravel cover, but it was not visually observed in any of the areas inspected. Below is a summary of observations from the concrete cap inspection.

- **SW-3 Area** The gravel cover appeared adequate; the underlying geotextile fabric was not exposed in any area (Appendix A; Photo 6).
- **SW-4 Area** The gravel cover appeared adequate; the underlying geotextile fabric was not exposed in any area.

- **SW-5 Area** The gravel cover appeared adequate; the underlying geotextile fabric was not exposed in any area (Appendix A; Photo 13).
- **SW-6 Area** The gravel cover appeared adequate; the underlying geotextile fabric was not exposed in any area (Appendix A; Photos 12 and 14).

No visual evidence of differential settling or vertical displacement was observed. Overall, the gravel cover was found to be in good condition and functioning properly with no apparent potential for exposure of the underlying subgrade. CDIM recommends that LRTC continue to regularly inspect the gravel cover and to perform maintenance as detailed in Section 5.

4.3 Triennial Upland Cap Survey

In its Third-Five Year Review, the EPA recommended that the upland cap be periodically surveyed to monitor for differential settlement that could impact cap integrity (EPA, 2011). The baseline triennial survey was completed in May 2014 and included in the 2013-2014 Annual Report (Weiss, 2014); the second triennial survey was completed in May 2017 and included in the 2016-2017 Annual Report (CDIM, 2017).

Dillon & Murphy of Lodi, California performed the third triennial survey on April 16, 2020. The survey plat provided in Appendix D present the 2020 point elevations as well as the baseline and 2017 elevations for comparison. Two previous survey points were destroyed during concrete patching and repaving activities; replacement survey points were taken for future comparisons. Elevations were within 0.01 inches at all other existing survey locations, indicating no differential settlement has occurred in the previous six years. Triennial surveys will remain a part of the Site O&M program, with the next survey to occur during the 2022-2023 reporting period.

5 PROPOSED SITE WORK FOR 2020-2021

During the 2020-2021 reporting year, the following O&M activities are proposed:

- Storm water discharge samples will be collected from the TS-2 treatment system effluent (combined SW-3 through SW-7) discharge location. TS-2 influent samples will also be collected to evaluate system effectiveness.
- Regular inspections of the upland capping system, including the drainage system, will continue as part of the SWPPP (CDIM, 2020) compliance activities and daily operations.
- Routine inspection of irrigation boxes and other irrigation features will be performed as part of environmental inspection programs.
- Periodic visual inspection of the shoreline during low tide events for evidence of seepage.
- An annual inspection of the concrete cap and gravel cover in the upland cap area will be performed in the early summer of 2021.
- As needed, significant cracks will be filled, and deteriorated sections of concrete in the upland capping system will be replaced.

Proposed site work under the O&M Plan for 2020-2021 is presented in Table 3.

Any repairs to the cap, if required, will be documented and reported in a memorandum to the EPA and the California Department of Toxic Substances Control.

6 CONCLUSIONS AND RECOMMENDATIONS

The annual upland capping system inspection found that the surface cap is in overall good condition, and it effectively functions to prevent erosion of the underlying soil. Storm water sampling results from the upland cap area indicate that treatment system TS-2 is effective in reducing the discharge of pesticides.

CDIM recommends continuing the following maintenance and monitoring activities:

- Continue to monitor gravel cover areas and add gravel as needed;
- As needed, fill any significant cracks, and replace deteriorated sections of concrete in the upland capping system;
- Implement regular inspections and BMPs identified in LRTC's SWPPP (CDIM, 2020);
- Implement regular inspection of irrigation boxes and other irrigation features to identify leakage and conduct repairs; and,
- Continue to monitor storm water for pesticides as described herein.

7 REFERENCES

CDIM Engineering (CDIM), 2020. Storm Water Pollution Prevention Plan, Levin Richmond Terminal, 402 Wright Avenue, Richmond, California, July.
, 2019. 2018-2019 Annual Report for United Heckathorn Superfund Site, Upland Capping System, Richmond, California, September 30.
, 2017. 2016-2017 Annual Report for United Heckathorn Superfund Site, Upland Capping System, Richmond, California, August 25.
CH2M Hill, 2014. Source Identification Study Report. United Heckathorn Superfund Site. Report Prepared for U.S. EPA. March.
PES Environmental, Inc. (PES), 1998. Pre-Final/Final Design and Remedial Action Work Plan, Former United Heckathorn Site, Upland Capping Project, Richmond, California. April 7.
, 1999a. Revised Draft Operations and Maintenance Plan, Upland Capping System, Former United Heckathorn Site, March.
, 1999b. Report Requesting Certification of Completion of Upland Cap Installation, Former United Heckathorn Facility. September 16.
State Water Resources Control Board, 2014. General Permit for Storm Water Discharges Associated with Industrial Activities, Order No. 2014-0057-DWQ, National Pollutant Discharge Elimination System General Permit No. CAS000001, April.
United States District Court, Northern District of California, 1996a. Consent Decree, Levin Group RD/RA, United States of America Plaintiff v. Montrose Chemical Corporation of California, et al., June.
, 1996b. Consent Decree, Montrose Group RD/RA, United States of America Plaintiff v. Montrose Chemical Corporation of California, et al., July 19.
United States Environmental Protection Agency (EPA), 1994a. Feasibility Study for the United Heckathorn Superfund Site, Richmond, California. July.
, 1994b. EPA Superfund Record of Decision: United Heckathorn Co., EPA ID: CAD981436363; OU 01, Richmond, CA, EPA/ROD/R09-96/5021996, October.
, 2011. Third Five-Year Review Report for United Heckathorn Superfund Site, Richmond, California, September.
, 2016. Fourth Five-Year Review Report for United Heckathorn Superfund Site, Richmond, California, August.

2019-2020 Annual Report United Heckathorn Superfund Site Upland Capping System Richmond, California

weiss Associates, 2014. 2013-2014 Annual Report for the United Heckathorn Superfund Site	e, Upland Capping
System, Richmond, California, July 15.	
, 2015. 2014-2015 Annual Report for the United Heckathorn Superfund Sit	e, Upland Capping
System, Richmond, California, September 11.	

TABLES

Table 1. 2019-2020 Annual Storm Water Sampling Data for Pesticides

													Ana	alytical re	sults														
Discharge Location	⁵ 2,4'-DDD	ප් 4,4'-DDD	^{5d} 2,4'-DDE	^{5d} 4,4'-DDE	ප් 2,4'-DDT	5 4,4'-DDT	^{5d} Total DDT	pg/L	ර් alpha-BHC	ර alpha-Chlordane 	ර් peta-BHC	ਰ ਨੂੰ cis-Nonachlor	ර් delta-BHC	d Dieldrin	bd ار Endosulfan I	ර් Endosulfan II	ਰ ਿ Endosulfan sulfate ਿ	bg/L Endrin	ප් Fndrin aldehyde	d √ Endrin ketone	ර ූ gamma-BHC (Lindane)	് ⊐ gamma-Chlordane	6d Heptachlor ⊤	ප් Heptachlor epoxide	ਰ ਜ Hexachlorobenzene	ठ Methoxychlor	pg/L	ठ ∽ Oxychlordane	छ trans-Nonachlor ⊤
INFLUENT																													
TS2-I ^b 12/7/2019 12/18/2019 1/16/2020	2,280 1,640 5,160	3,850 2,780 7,810	326.0 252* 869*	5,120 4,210* 10,900*	5,060 2,570 7,520	11,100 9,600 18,400	27,736 21,052 50,659	10.3 7.7 J 40.7	51.3 73.8 103.0	913 789 1,380	54.7 45.4 74.1	133 <42.3 195*	<12.5 <42.3 <38.7	1,590 1,100 2,930	<36 <211 <193	<123 <211 <193	<91.09 <211 <193	923 341 1,370*	<81 <211 <193	624 <211 <193	69.5 48.1 65.2	912 736 1,390	53.7 <42.3 <38.7	<321.5 ** 85 138	1,010 2,130 1,990 B	<120 <42.3 <38.7	<26.1 <42.3 <38.7	<30.8 <42.3 <38.7	497 425 762
EFFLUENT																													
TS2-E ^c 12/7/2019 12/18/2019 1/16/2020	72.6 102 715	86.5 149 1,130	<5.949 17.7 J 114	46.5 134 1,320	40.6 109 990	76.6 219 2,140	330 731 6,409	<6.369 <42.0 <39.2	39.6 57.4 57.0	54.8 72.1 226	68.4 83.1 64.6	<27.79 <42.0 <39.2	<6.86 <42.0 <39.2	621 556 835	<35 <210 <196	<56 ** <210 <196	<69 <210 <196	226 202 279	<45.29 <210 <196	381 299 <196	59 62.8 48.7	57.3 61.7 191	<4.09 ** <42.0 <39.2	295.7 218 73	34.7 88.0 B 434 B	<9.59 <42.0 <39.2	<42.0		39.6 J
Remediation Goal	d						590		_		-			140	_	-	_	_	_		_						_	-	

Notes

Detected concentrations of pesticides are displayed in **bold**.

Acronyms/Abbreviations:

< n =not detected above the sample-specific estimated <u>detection</u> limit

B = compound was also detected in laboratory method blank

D = sample diluted for analysis; concentration calculated value

J = concentration reported is an estimated value

pg/L = picograms per liter

USEPA = United States Environmental Protection Agency

^{**} Non-detect result reported to "estimated maximum possible concentration" rather than method detection limit.

^a Laboratory method EPA 1699.

^b TS2-I is the combined influent from interceptors SW-3 to SW-7 and does not represent discharge. It is used to evaluate TS-2 effectiveness.

^c TS2-E is the effluent of treatment system TS-2, which treats storm water from interceptors SW-3 to SW-7. It represents facility discharge.

d Remediation goal from USEPA Superfund Record of Decision: United Heckathorn Co., October 1994, for surface waters in the Lauritzen, Santa Fe, and lower Richmond Inner Harbor Channels.

^e Reported result is sum of detected cis- and trans-heptachlor epoxide concentrations.

Table 2. 2019-2020 Annual Storm Water Sampling Data for General Parameters and Metals

					Α	nalytic	al P	aramet	ers ^a				
Discharge Location	Notes	Hd -	mg/L	& M g/L		Aluminum μg/L		Copper	uo <u>l</u> µg/L		Γead μg/L		zinc μg/L
INFLUENT													
TS2-l ^b 12/7/2019 12/18/2019 1/16/2020		7.64 7.58 7.36	<5.26 <5.44 <5.44	16 <u>790</u> <u>136</u>	J	208 144 685		 	361 342 2,050		9.24 4.63 19		95.3 65.6 149
EFFLUENT	•												
TS2-E ^c 12/7/2019 12/7/2019 12/18/2019 1/16/2020 1/16/2020	Duplicate Duplicate	7.56 7.56 7.42 7.52 7.54	<5.56 <5.38 <5.26 <5.49 <5.49	0.52 <2.5 4.5 28.8 28.6	J	<100 <100 <100 103.0 96.6	J	 	39.3 34.9 20.4 300 307	J J	0.562	3 J J J	50.3 55.0 24.8 44.1 43.4
2014 IGP Nume	6.0-9.0 ^e	15	100		750		33.2	1,000		262		260	

Notes:

Bold values exceed 2014 IGP NALs listed at the bottom of the table.

Acronyms/Abbreviations:

< n =not detected above the detection limit

B = analyte was present in the associated method blank

EPA = Environmental Protection Agency

IGP = Industrial General Permit

J = concentration reported is an estimated value

mg/L = milligrams per liter

NAL = numeric action level

O&G HEM = oil and grease, hexane extractable material

TSS = total suspended solids

ug/L = micrograms per liter

^a Laboratory Methods: pH by SM4500HB; TSS by SM2540D, O&G by EPA 1664A; metals by EPA 200.8.

^b TS2-I is the combined influent from interceptors SW-3 to SW-7 and does not represent discharge. It is used to evaluate TS-2 effectiveness.

^cTS2-E is the effluent of treatment system TS-2, which treats storm water from interceptors SW-3 to SW-7.

^d Numeric Action Level (NAL) in 2014 General Permit for Storm Water Discharges Associated with Industrial Activities (2014 IGP). California State Water Resources Control Board, April 1, 2014. Annual average unless otherwise noted.

Table 3. Seep Sample Results

	Field Measurements						
Constituent	Seep-200416	Bay Water ¹					
рН	7.01	7.85					
Temperature (°C)	18.6	18.8					
Electrical Conductivity (mS/cm)	0.416	34.887					
Turbidity (NTU)	14.9	5.6					
,		2					

Turbidity (NTU)	14.9		5.6					
	Laboratory Results ²							
	Seep-200416		Seep-200416 (Filte	ered)				
Constituent	pg/L		pg/L					
2,4'-DDD	37,200	D	28,100	D				
4,4'-DDD	31,000	D	22,200					
Total DDD	68,200		50,300					
2,4'-DDE	6,270		4,050					
4,4'-DDE	103,000	D	62,700	D				
Total DDE	109,270		66,750					
2,4'-DDT	45,800	D	29,000	D				
4,4'-DDT	96,400	D	56,400	D				
Total DDT	142,200		85,400					
Sum of DDT Isomers	319,670	D	202,450	D				
Aldrin	2,480		1,660					
alpha-BHC	49.9		37.7	J				
beta-BHC	344		315					
delta-BHC	< 39.6		< 41.9					
gamma-BHC (Lindane)	16	J	< 41.9					
alpha-Chlordane	47,800	D	35,500	D				
gamma-Chlordane	29,000	D	29,000	D				
cis-Nonachlor	3,830		2730					
Dieldrin	841,000	D, B	657,000	D, B				
Endosulfan I	< 198		< 209					
Endosulfan II	< 198		< 209					
Endosulfan sulfate	< 198		< 209					
Endrin	400,000	D	345,000	D				
Endrin aldehyde	91,000	D	150,000	D				
Endrin ketone	1,880,000	D	1,540,000	D				
Heptachlor	1,180		940					
cis-Heptachlor epoxide	3,470		3,230					
trans-Heptachlor epoxide	58,100	D	50,900	D				
Hexachlorobenzene	1,760	В	1,380	В				
4,4-Methoxychlor	< 198		< 209					
Mirex	< 39.6	_	< 41.9	_				
trans-Nonachlor	15,000	D	10,100	D				
Oxychlordane	< 39.6		< 41.9					

Notes:

Italic results indicate calculated value

- 1. Field measurements also taken for sample of Bay water from Lauritzen Channel for comparison purposes.
- 2. Samples analyzed for organochlorine pesticides (EPA Method 1699) by Vista Analytical in El Dorado Hills, CA.

Abbreviations:

B - compound also detected in method blank

BHC - benzene hexachloride

°C - degrees Celsius

D - result from diluted sample

DDD - dichlorodiphenyldichloroethane

DDE - dichlorodiphenyldichloroethylene

DDT - dichlorodiphenyltrichloroethane

EPA - United States Environmental Protection Agency

J - result below applicable reporting limit; qualified as estimated

mS/cm - miliSiemens per centimeter

NTU - nephelometric turbidity unit

pg/L - picograms per liter

Table 4. Seep Pesticide Mass Discharge Estimate

2 Observed Flow Rate per Seep (L/min)¹ 3 Observed Number of Seeps² 90 Estimated Duration of Seep (days)³

	April 16, 2020					
	Seep Sample Results ⁴	Total Estimated Mass⁵				
Constituent	pg/L		lb			
2,4'-DDD	37,200	D	6.38E-05			
4,4'-DDD	31,000	D	5.31E-05			
Total DDD	68,200		1.17E-04			
2,4'-DDE	6,270		1.07E-05			
4,4'-DDE	103,000	D	1.77E-04			
Total DDE	109,270		1.87 E -04			
2,4'-DDT	45,800	D	7.85E-05			
4,4'-DDT	96,400	D	1.65E-04			
Total DDT	142,200		2.44E-04			
Sum of DDT Isomers	319,670	D	5.48E-04			
Aldrin	2,480		4.25E-06			
alpha-BHC	49.9		8.55E-08			
beta-BHC	344		5.90E-07			
delta-BHC	< 39.6		3.39E-08			
gamma-BHC (Lindane)	16	J	2.76E-08			
alpha-Chlordane	47,800	D	8.19E-05			
gamma-Chlordane	29,000	D	4.97E-05			
cis-Nonachlor	3,830		6.57E-06			
Dieldrin	841,000	D, B	1.44E-03			
Endosulfan I	< 198		1.70E-07			
Endosulfan II	< 198		1.70E-07			
Endosulfan sulfate	< 198		1.70E-07			
Endrin	400,000	D	6.86E-04			
Endrin aldehyde	91,000	D	1.56E-04			
Endrin ketone	1,880,000	D	3.22E-03			
Heptachlor	1,180		2.02E-06			
cis-Heptachlor epoxide	3,470		5.95E-06			
trans-Heptachlor epoxide	58,100	D	9.96E-05			
Hexachlorobenzene	1,760	В	3.02E-06			
4,4-Methoxychlor	< 198		1.70E-07			
Mirex	< 39.6		3.39E-08			
trans-Nonachlor	15,000	D	2.57E-05			
Oxychlordane	< 39.6		3.39E-08			

Notes:

Italic results indicate calculated value

- 1. Flow rate observed during sampling performed on April 16, 2020 at seep located south of interceptor SW-6.
- 2. During a site visit on May 11, 2020, an additional two seeps were observed; flow rate from each seep assumed equal.
- 3. Seep duration estimated as 90 days to provide a conservative discharge estimate.
- 4. Sample "Seep-200416" analyzed for organochlorine pesticides (EPA Method 1699) by Vista Analytical in El Dorado Hills, CA.
- 5. Mass for non-detected analytes estimated using half of reporting limit as result.

Abbreviations:

B - compound also detected in method blank

BHC - benzene hexachloride

D - result from diluted sample

DDD - dichlorodiphenyldichloroethane

DDE - dichlorodiphenyldichloroethylene DDT - dichlorodiphenyltrichloroethane

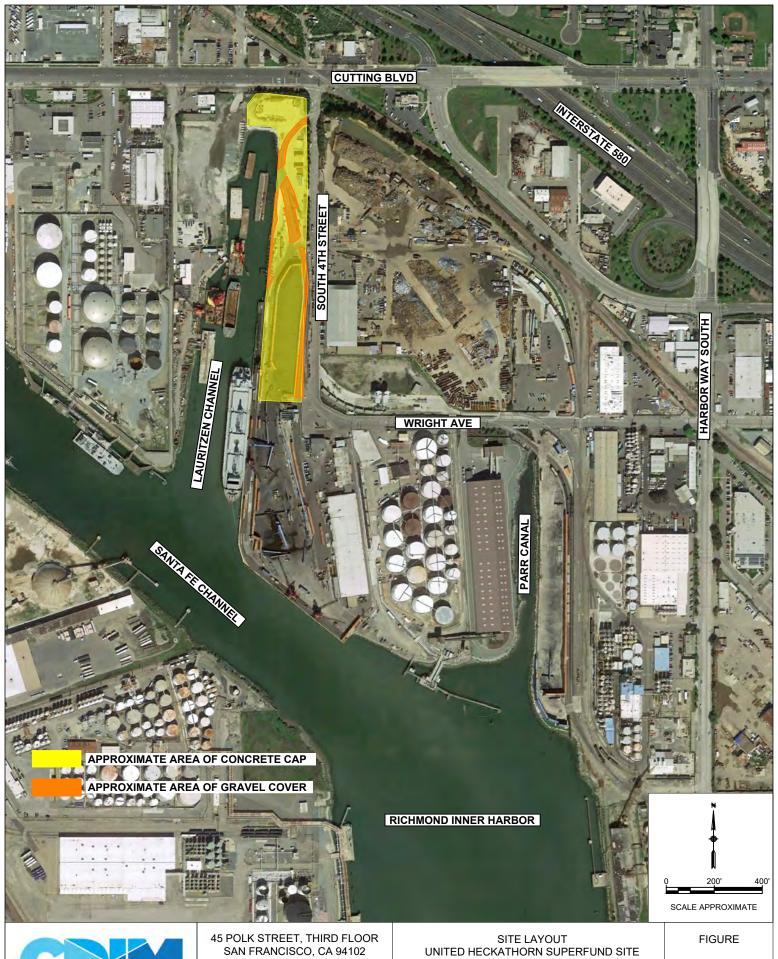
EPA - United States Environmental Protection

J - result below applicable reporting limit; quali

T-61- C	D I O't- IMI- f 0000 0004	Landa Dialamana Tamaina LOamana tian
Table 5.	Proposed Site Work for 2020-2021	Levin Richmond Terminal Corporation

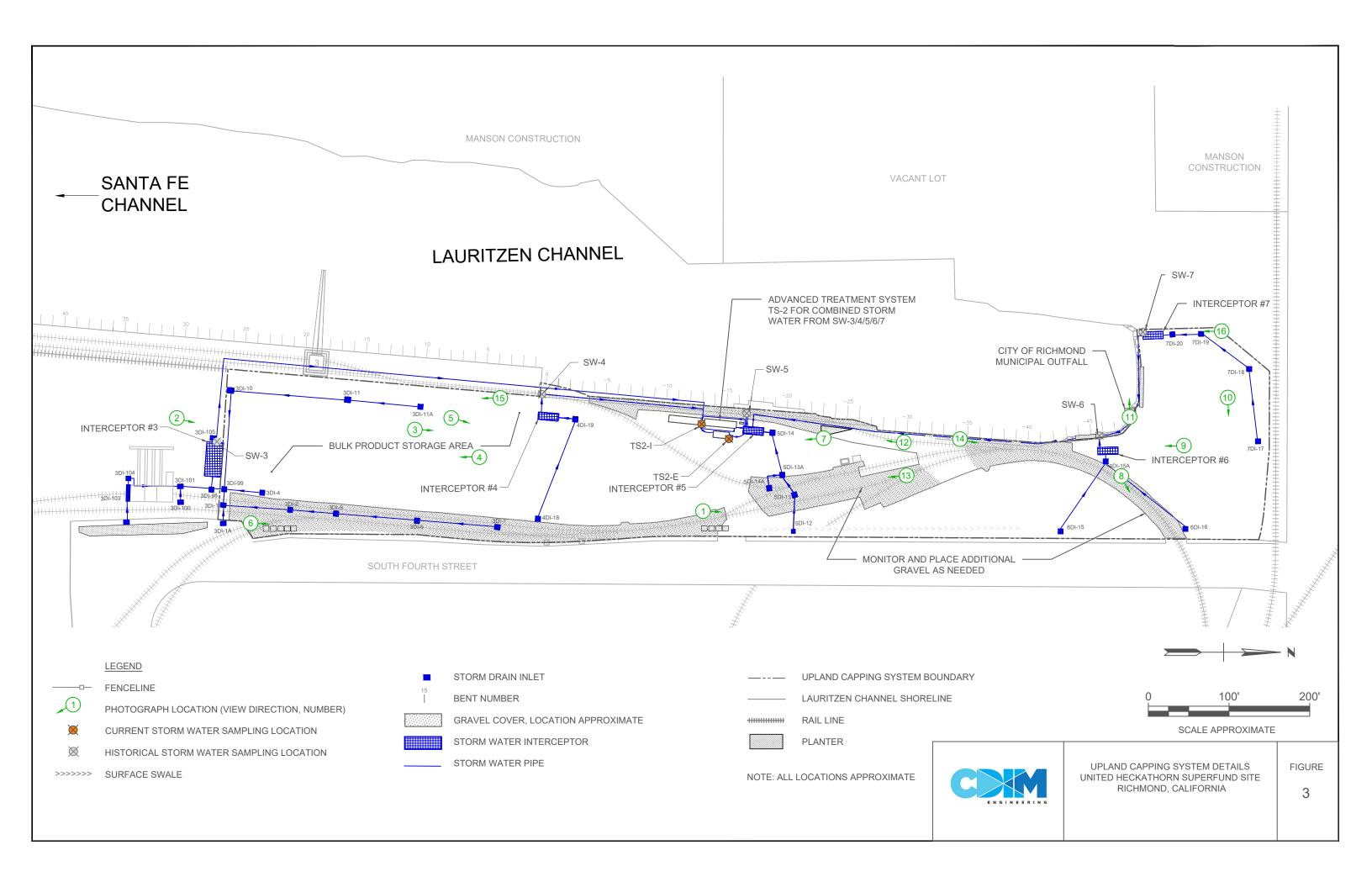
Aspect	Description	Anticipated Completion Date
General	Implement activities (i.e., cap maintenance, storm water monitoring, interceptor cleanout, irrigation feature inspection) described in the O&M Plan. ¹	Continuously
	Submit report of O&M performed for the period of July 1, 2020 to June 30, 2021.	On/around August 15, 2021
Concrete Cap	Perform 2020-2021 annual inspection of the cap under oversight of a registered engineer.	June 1, 2021
	Monitor identified cracks, seals, and joints for signs of propagation and/or degradation throughout upland capping system.	Continuously
Gravel Cover	Monitor the gravel cover throughout the Upland Area for signs of thinning or ground exposure.	Continuously
Storm Water System	Continue to treat combined storm water pumped from interceptors SW-3, SW-4, SW-5, SW-6, and SW-7 at treatment system TS-2 using flocculation, settling, and filtration methods.	Continuously

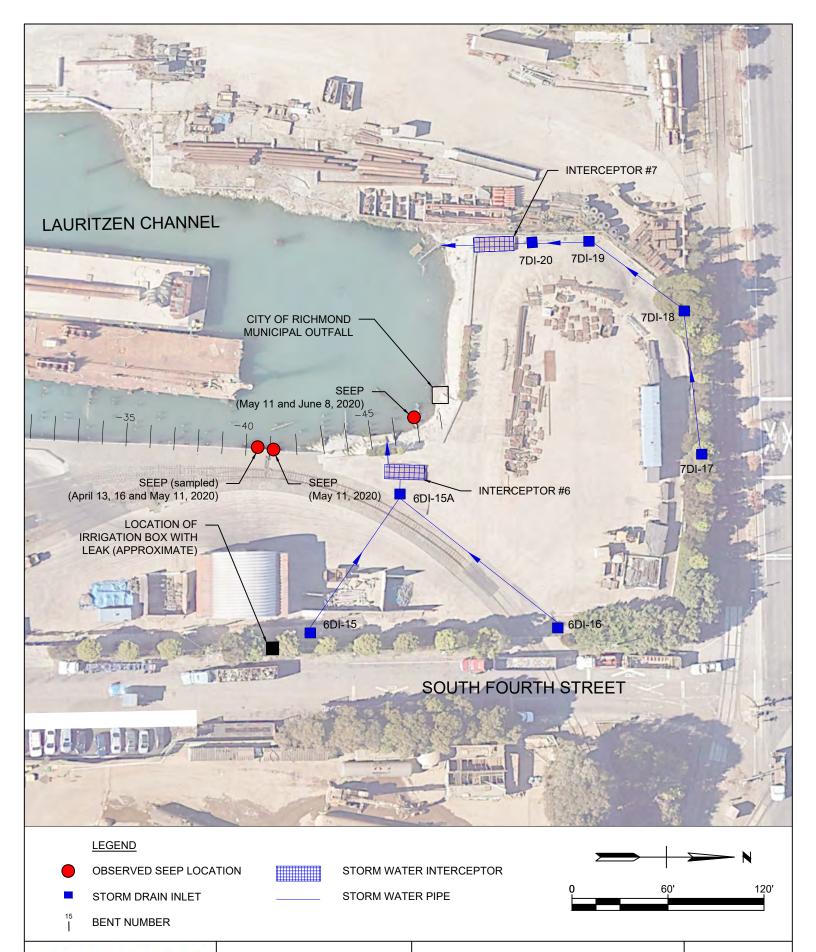
^{1.} Revised Draft Operations and Maintenance Plan, Upland Capping System, Former United Heckathorn Site, PES Environmental, Inc., March 1999.


FIGURES

45 POLK STREET, THIRD FLOOR SAN FRANCISCO, CA 94102 WWW.CDIMENGINEERING.COM PH: (415) 498-0535 SITE LOCATION MAP UNITED HECKATHORN SUPERFUND SITE UPLAND CAPPING SYSTEM RICHMOND, CALIFORNIA FIGURE

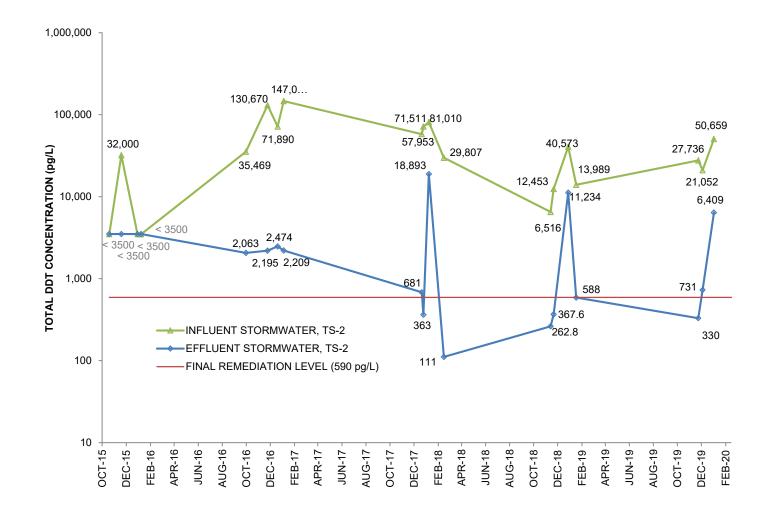
1





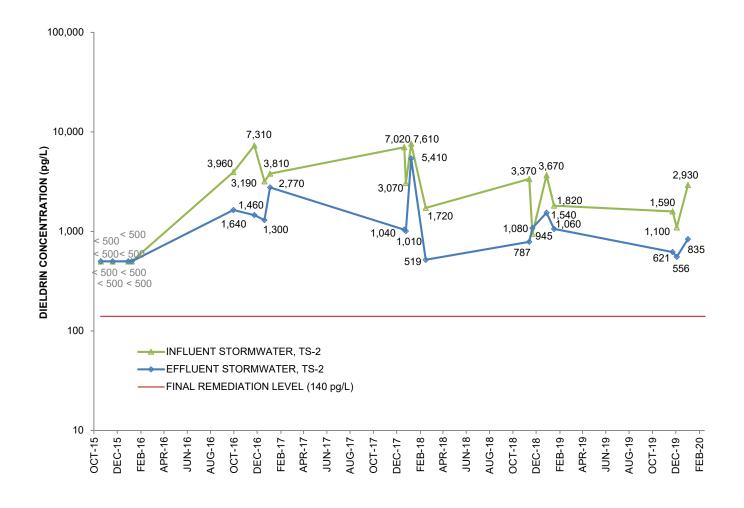
SAN FRANCISCO, CA 94102 WWW.CDIMENGINEERING.COM PH: (415) 498-0535

UPLAND CAPPING SYSTEM RICHMOND, CALIFORNIA


2

45 POLK STREET, THIRD FLOOR SAN FRANCISCO, CA 94102 WWW.CDIMENGINEERING.COM PH: (415) 498-0535 SEEP LOCATIONS UNITED HECKATHORN SUPERFUND SITE RICHMOND, CALIFORNIA FIGURE 4

NOTES:


- 1. TOTAL DDT REPRESENTS THE SUM OF DETECTED DDT, DDD, AND DDE CONCENTRATIONS AND/OR DETECTION LIMITS FOR NON-DETECTED COMPOUNDS (DENOTED BY < N).
- 2. RESULTS REPORTED IN pg/L

45 POLK STREET, THIRD FLOOR SAN FRANCISCO, CA 94102 WWW.CDIMENGINEERING.COM PH: (415) 498-0535 TOTAL DDT IN STORMWATER, 2015-2020 TREATMENT SYSTEM TS-2 UNITED HECKATHORN SUPERFUND SITE UPLAND CAPPING SYSTEM RICHMOND, CALIFORNIA

FIGURE

5

NOTES:

1. RESULTS REPORTED IN pg/L

APPENDIX A

Upland Capping System Inspection Photographs

Photo 1 – Photo taken during the 2019-2020 Annual Upland Capping System Inspection. No change in condition on previous repairs.

Photo 2 -Drain inlet 3DI-105 (under rubber cover) and interceptor SW-3 where piping modifications were made during the 2019-2020 reporting year.

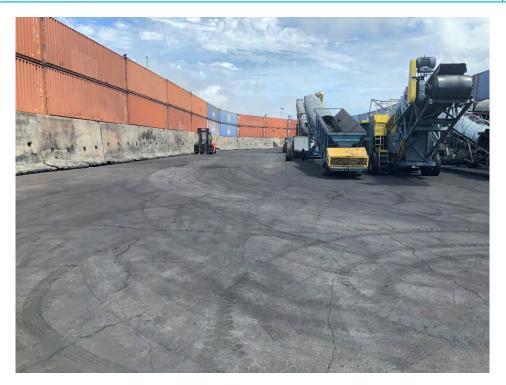


Photo 3 – Looking north at the area south of the secondary bulk product storage area. No significant cracking or deterioration is visible.

Photo 4 – Looking south: surficial cracking within secondary storage area.

Photo 5 – Looking northeast: seams and surficial cracking within secondary storage area.

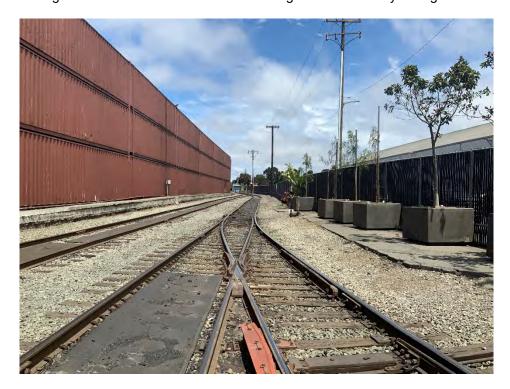


Photo 6 – Gravel cover along the east border of the property. Planter boxes have been installed along the fence line.

Photo 7 – Looking south toward TS-2, no significant cracks or deterioration noted in the area.

Photo 8 – Looking northeast near northeast gate. No significant cracks or deterioration noted in the area. Gravel cover along railroad tracks appears adequate, with no underlying geotextile exposed.

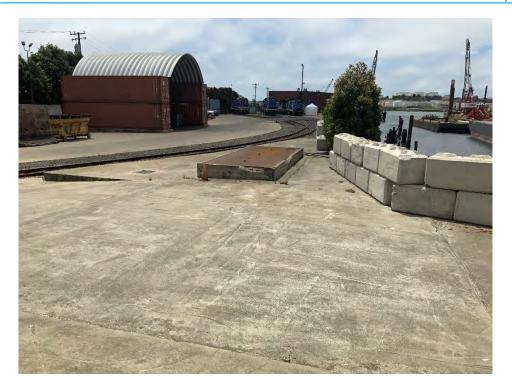


Photo 9 – Looking south toward SW-6. No significant crack or deterioration noted in the area.

Photo 10 - Looking east at concrete cap north of the Lauritzen Channel. No significant cracks or deterioration noted in the area.

Photo 11 – Looking west toward the municipal outfall, at the north end of the Lauritzen Channel. Shotcrete has been applied to stabilize the area along the shoreline.

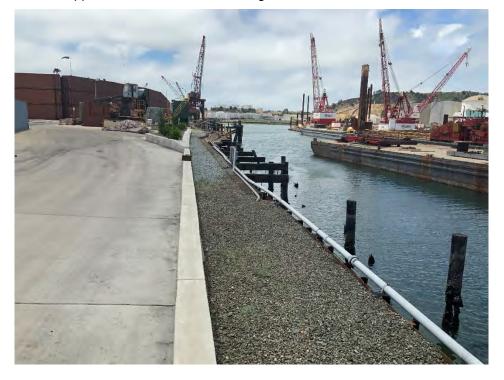


Photo 12 – Looking south: gravel cover is visible along the Lauritzen Channel north of TS-2.

Photo 13 – Looking south in railroad maintenance area. Gravel cover in good condition with no geotextile exposed.

Photo 14 – Looking north at the concrete cap and gravel cover along Lauritzen Channel.

Photo 15 – Looking south along western border of the site. Concrete seams and minor surficial cracking.

Photo 16 – Looking south toward interceptor SW-7 at the concrete cap in good condition.

Photo 17 – Location of Seeps #1 and #2, located approximately Bent -40.5 and Bent -41 respectively.

Photo 18 – Close-up of Seep #1 (left) and Seep #2 (right).

Photo 19 – In South 4th Street, looking west at the LRT fenceline. Pooling adjacent to irrigation box (left) and damaged irrigation box (right) observed on May 11, 2020.



Photo 20 – Seep #3 located west of interceptor SW-6 at approximately Bent -47.

APPENDIX B

Laboratory Analytical Reports

January 02, 2020

Vista Work Order No. 1904267

Mr. Scott Bourne CDIM Engineering 45 Polk Street, 3rd Floor San Francisco, CA 94102

Dear Mr. Bourne,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on December 09, 2019 under your Project Name 'LRTC Industrial Stormwater 101-004'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1904267 Page 1 of 15

Vista Work Order No. 1904267 Case Narrative

Sample Condition on Receipt:

One water sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1699

The sample was extracted and analyzed for chlorinated pesticides by EPA Method 1699 using a ZB-50 GC column.

Holding Times

As requested, the three bottles of the sample were composited prior to extraction. Approximately, one liter of the composite was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the method acceptance criteria are listed in the table below:

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
1904267-01	TS2-I-191207	EPA Method 1699	13C10-Heptachlor	Н	153
B9L0133-BS1	B9L0133-BS1	EPA Method 1699	13C10-Heptachlor	Н	136

H = Recovery was outside laboratory acceptance criteria.

Work Order 1904267 Page 2 of 15

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 1904267 Page 3 of 15

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1904267-01	TS2-I-191207	07-Dec-19 08:35	09-Dec-19 07:16	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Vista Project: 1904267 Client Project: LRTC Industrial Stormwater 101-004

Work Order 1904267 Page 4 of 15

ANALYTICAL RESULTS

Work Order 1904267 Page 5 of 15

Sample ID: Method Blank EPA Method 1699

Matrix: Aqueous QC Batch: B9L0133 Lab Sample: B9L0133-BLK1

Sample Size: 1.00 L Date Extracted: 12-Dec-2019 6:15 Date Analyzed: 31-Dec-19 18:29 Column: ZB-50

Analyte C	onc. (pg/L)	DL	EMPC	Qualifiers]	Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	10.3			J	IS	13C6-Hexachlorobenzene	32.1	5 - 120	
alpha-BHC	ND	5.45			IS	13C6-alpha-BHC	59.4	32 - 130	
Lindane (gamma-BHC)	ND	8.31			IS	13C6-Lindane (gamma-BHC)	60.0	11 - 120	
beta-BHC	ND	7.78			IS	13C6-beta-BHC	60.1	32 - 130	
delta-BHC	ND	6.25			IS	13C6-delta-BHC	60.6	36 - 137	
Heptachlor	ND	1.35			IS	13C10-Heptachlor	97.7	5 - 120	
Aldrin	ND	2.33			IS	13C12-Aldrin	81.0	5 - 120	
Oxychlordane	ND	8.71			IS	13C10-Oxychlordane	81.7	23 - 135	
cis-Heptachlor Epoxide	ND	5.58			IS	13C10-cis-Heptachlor Epoxide	82.0	27 - 137	
trans-Heptachlor Epoxide	e ND	23.0			IS	13C10-trans-Chlordane (gamma)	75.5	21 - 132	
trans-Chlordane (gamma) ND	7.86			IS	13C10-trans-Nonachlor	81.3	14 - 136	
trans-Nonachlor	ND	6.44			IS	13C9-Endosulfan I (alpha)	65.1	15 - 148	
cis-Chlordane (alpha)	ND	6.45			IS	13C12-2,4'-DDE	58.8	47 - 160	
Endosulfan I (alpha)	ND	12.1			IS	13C12-4,4'-DDE	79.5	47 - 160	
2,4'-DDE	ND	7.73			IS	13C12-Dieldrin	71.9	40 - 151	
4,4'-DDE	ND	7.18			IS	13C12-Endrin	73.4	35 - 155	
Dieldrin	4.08			J	IS	13C10-cis-Nonachlor	70.1	36 - 139	
Endrin	ND	4.86			IS	13C9-Endosulfan II (beta)	76.2	5 - 122	
cis-Nonachlor	ND	5.01			IS	13C12-2,4'-DDD	80.9	5 - 199	
Endosulfan II (beta)	ND	17.4			IS	13C12-2,4'-DDT	82.3	5 - 199	
2,4'-DDD	ND	14.0			IS	13C12-4,4'-DDD	86.1	5 - 120	
2,4'-DDT	ND	22.4			IS	13C12-4,4'-DDT	96.3	5 - 120	
4,4'-DDD	ND	15.4			IS	13C9-Endosulfan Sulfate	91.7	15 - 148	
4,4'-DDT	ND	23.1			IS	13C12-Methoxychlor	104	5 - 120	
Endosulfan Sulfate	ND	14.5			IS	13C10-Mirex	83.2	5 - 120	
4,4'-Methoxychlor	ND	3.00			IS	13C12-Endrin Aldehyde	60.3	15 - 148	
Mirex	ND	1.61			IS	13C12-Endrin Ketone	99.2	15 - 148	
Endrin Aldehyde	ND	13.1							
Endrin Ketone	ND	11.9							

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

Work Order 1904267 Page 6 of 15

Sample ID: OPR EPA Method 1699

Matrix: Aqueous QC Batch: B9L0133 Lab Sample: B9L0133-BS1

Sample Size: 1.00 L Date Extracted: 12-Dec-2019 6:15 Date Analyzed: 31-Dec-19 16:00 Column: ZB-50

Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
Hexachlorobenzene	997	1000	99.7	50 - 120	IS	13C6-Hexachlorobenzene	49.9	5 - 120
alpha-BHC	991	1000	99.1	50 - 120	IS	13C6-alpha-BHC	82.5	17 - 141
Lindane (gamma-BHC)	994	1000	99.4	50 - 120	IS	13C6-Lindane (gamma-BHC)	83.0	5 - 124
beta-BHC	1010	1000	101	50 - 120	IS	13C6-beta-BHC	82.3	17 - 141
delta-BHC	988	1000	98.8	50 - 120	IS	13C6-delta-BHC	82.2	16 - 150
Heptachlor	889	1000	88.9	50 - 120	IS	13C10-Heptachlor	136	5 - 128
Aldrin	954	1000	95.4	50 - 120	IS	13C12-Aldrin	102	5 - 126
Oxychlordane	894	1000	89.4	50 - 120	IS	13C10-Oxychlordane	117	5 - 144
cis-Heptachlor Epoxide	902	1000	90.2	50 - 120	IS	13C10-cis-Heptachlor Epoxide	114	8 - 146
trans-Heptachlor Epoxide	901	1000	90.1	50 - 120	IS	13C10-trans-Chlordane (gamma)	100	15 - 144
trans-Chlordane (gamma)	986	1000	98.6	50 - 120	IS	13C10-trans-Nonachlor	109	13 - 149
trans-Nonachlor	974	1000	97.4	50 - 120	IS	13C9-Endosulfan I (alpha)	98.1	5 - 144
cis-Chlordane (alpha)	763	1000	76.3	50 - 120	IS	13C12-2,4'-DDE	86.9	26 - 169
Endosulfan I (alpha)	923	1000	92.3	50 - 120	IS	13C12-4,4'-DDE	105	26 - 169
2,4'-DDE	903	1000	90.3	24 - 123	IS	13C12-Dieldrin	93.2	19 - 161
4,4'-DDE	885	1000	88.5	50 - 120	IS	13C12-Endrin	110	20 - 157
Dieldrin	946	1000	94.6	50 - 120	IS	13C10-cis-Nonachlor	95.7	17 - 154
Endrin	980	1000	98.0	50 - 120	IS	13C9-Endosulfan II (beta)	110	5 - 120
cis-Nonachlor	978	1000	97.8	50 - 120	IS	13C12-2,4'-DDD	107	14 - 200
Endosulfan II (beta)	864	1000	86.4	5 - 200	IS	13C12-2,4'-DDT	114	14 - 200
2,4'-DDD	1010	1000	101	50 - 120	IS	13C12-4,4'-DDD	118	14 - 200
2,4'-DDT	1090	1000	109	50 - 120	IS	13C12-4,4'-DDT	133	13 - 200
4,4'-DDD	1010	1000	101	42 - 120	IS	13C9-Endosulfan Sulfate	108	5 - 144
4,4'-DDT	1010	1000	101	50 - 120	IS	13C12-Methoxychlor	136	8 - 200
Endosulfan Sulfate	944	1000	94.4	50 - 120	IS	13C10-Mirex	106	5 - 138
4,4'-Methoxychlor	987	1000	98.7	50 - 120	IS	13C12-Endrin Aldehyde	96.4	5 - 144
Mirex	998	1000	99.8	50 - 120	IS	13C12-Endrin Ketone	130	5 - 144
Endrin Aldehyde	921	1000	92.1	50 - 134				
Endrin Ketone	928	1000	92.8	50 - 134				

LCL-UCL - Lower control limit - upper control limit

Work Order 1904267 Page 7 of 15

Sample ID:	TS2-I-191207								EPA Met	thod 1699
Client Data Name: Project: Date Collected:	CDIM Engineering LRTC Industrial Stormwater 101-004 07-Dec-2019 8:35		Sample Data Matrix: Sample Size:	Water 1.04 L	L Q	oorator ab Samp C Batch ate Ana	ole: 1904267-01	Date Received: Date Extracted:		
Analyte	Conc. (pg/L)	DL	EMPC	0	ualifiers	. 1	Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	4.8 /	DL	EMIC		B	IS	13C6-Hexachlorobenzene	80.3	5 - 120	Quantiters
alpha-BHC	51.3				Ъ	IS	13C6-alpha-BHC	76.5	32 - 130	
Lindane (gamma-BH						IS	13C6-Lindane (gamma-BHC)	85.0	11 - 120	
beta-BHC	54.7					IS	13C6-beta-BHC	71.6	32 - 130	
delta-BHC		12.5				IS	13C6-delta-BHC	72.3	36 - 137	
Heptachlor	53.7					IS	13C10-Heptachlor	153	5 - 120	Н
Aldrin	10.3				J	IS	13C12-Aldrin	96.7	5 - 120	
Oxychlordane		30.8				IS	13C10-Oxychlordane	86.9	23 - 135	
cis-Heptachlor Epox	ride ND		77.0			IS	13C10-cis-Heptachlor Epoxide	80.0	27 - 137	
trans-Heptachlor Ep			245			IS	13C10-trans-Chlordane (gamma		21 - 132	
trans-Chlordane (gai						IS	13C10-trans-Nonachlor	72.5	14 - 136	
trans-Nonachlor	497					IS	13C9-Endosulfan I (alpha)	81.5	15 - 148	
cis-Chlordane (alpha	a) 913					IS	13C12-2,4'-DDE	68.2	47 - 160	
Endosulfan I (alpha)	ND	36.0				IS	13C12-4,4'-DDE	68.4	47 - 160	
2,4'-DDE	326					IS	13C12-Dieldrin	67.7	40 - 151	
4,4'-DDE	5120					IS	13C12-Endrin	85.2	35 - 155	
Dieldrin	1590				В	IS	13C10-cis-Nonachlor	54.4	36 - 139	
Endrin	923					IS	13C9-Endosulfan II (beta)	80.0	5 - 122	
cis-Nonachlor	133					IS	13C12-2,4'-DDD	91.1	5 - 199	
Endosulfan II (beta)	ND	123				IS	13C12-2,4'-DDT	91.9	5 - 199	
2,4'-DDD	2280					IS	13C12-4,4'-DDD	84.2	5 - 120	
2,4'-DDT	5060					IS	13C12-4,4'-DDT	96.6	5 - 120	
4,4'-DDD	3850					IS	13C9-Endosulfan Sulfate	77.1	15 - 148	
4,4'-DDT	11100					IS	13C12-Methoxychlor	81.1	5 - 120	
Endosulfan Sulfate		91.1				IS	13C10-Mirex	41.1	5 - 120	
4,4'-Methoxychlor		120				IS	13C12-Endrin Aldehyde	66.2	15 - 148	
Mirex		26.1				IS	13C12-Endrin Ketone	81.8	15 - 148	
Endrin Aldehyde		81.0								
Endrin Ketone	624									

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

Page 8 of 15 Work Order 1904267

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1904267 Page 9 of 15

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ are\ located\ in\ the\ Quality\ Assurance\ office\ and\ are\ available\ upon\ request.$

Work Order 1904267 Page 10 of 15

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699			
HRGC/HRMS				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B			
GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1904267 Page 12 of 15

-	1
Total State of the last	П
	 •

CHAIN OF CUSTODY RECORD

1904267 0.5°C

															12		VOU			
ABORATO Vista Analyti 1104 Windfie (916) 673-15 Karen Volpe	cal eld Way, El Dorado Hills CA 95762 520	INSTRUCTIONS FOR Please send analytic the original chain-of-c bas@cdimengineering sab@cdimengineering	results, electr sustody form t	onic delive		1	Analysis GeoTrac LOCUS I Report R Report se	ker EDF EDD red esults to	requirequireq?	ed? □ Ye □ RL	s X	s XI		weight		Notify us	analytic/p of any a	rep me	thod and detection lin tus peaks in GC or ot y questions or problem	her scans.
CDIM CONT			Bryan Starks						- 10.			_	EQUES1						COC Numi	per:
CDIM Engine	eering	,	415-498-053							$\overline{}$			T	T	П	Т				
15 Polk Stre	et, 3rd Floor	Sampled by: 💦																	127	. /
	co, California 94102 NFORMATION	Sample date(s): [7				-													Page o	
	LRTC Industrial Stormwater					1699)													SDG num	ber:
Job#:	101-004					EPA 16														
Address:	402 Wright Avenue, Richmond CA 94804					Pesticides (EPA														
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	Pesti													Sample Specif	ic Notes:
	TS2-1- 19 1707	12/7/19	8.35	w	3	X													Composite	
	-					\vdash		+	\Box					+		-	+			
	_					-							+			_				
		_																		
				Field Filt	ered (X):															
Preserv	ation Used: 1= Ice, 2= HCl; 3= H ₂ SO ₄ ; 4	=HNO ₃ ; 5=NaOH; 6= Othe	or			1														
Special Ins	structions/QC Requirements & Cor	nments: Level II Rep	ort. Report	with rep	orting lim	it an	d metho	d dete	ction	limit.	Anal	yze an	d repo	t only	the m	etals I	isted al	oove.		
			·	·								-	·							
Relinquished	by: St	Company:		Date/Time:	1020		ived by:	22					0	Comp	any:				Date/Time:	0716
Relinquished	by:	Company:		Date/Time:			ived by:						0	Comp					12/09/19 Date/Time:	
Relinquished	by:	Company:		Date/Time:		Rece	ived by:		_				0	Comp	any:				Date/Time:	
	x = Samples released to a secured, lo						• :	Sample	es recei	ived fro	om a se	ecured.	locked ar	ea						
	SAMPLERS NAME	Buyan Stank	2						мови			80	_		(W	0				
	SAMPLERS SIGNATURE		6						DATE	/ TIME		(7	1711		100	_				
		000					_													

Sample Log-In Checklist

Vista Work Order #:									std_	of	-
O a marila a	Date/Tim	ne		In	itials:		Loc	ation:	INB-	2	
Samples Arrival:	12/09/19 0716		•				k: _ N/A				
Delivered By:	FedEx	UPS	On Tra	ıc	GSO	DHI	-	Hand Delivered		Oth	ner
Preservation:	(To	e >	Blu	Jе	e Ice Dry Ice			y Ice		No	ne
Temp °C: 0.5	Temp °C: 0.5 (uncorrected) Probe used Y/ N Thermometer ID: DT-4										
Temp °C: O S (corrected) Probe used Y / N Thermom								rmome	ter iD:	<u> </u>	<u>, </u>
Rock to the last training		T A STEEL				I bi t		BUTH	YES	NO	NA
Shipping Contain	er(s) Intac	t?							/		
Shipping Custody	/ Seals Int										/
Airbill	Trk	# 77	86 0	O	B2 1	950					
Shipping Docume	entation Pi	resent?							V		
Shipping Contain	er		Vista	Ç	Client	R	etain	Re	eturn	Dis	pose
Chain of Custody	/ Sample	Docume	ntation Pr	ese	ent?						
Chain of Custody											
Holding Time Acc										+	
Logged In:	Date/Tin	19 093	311	lr	nitials:			ation:	WR-2		
	12/09/	17 07	J*\		WWO		She	elf/Rack	: <u> C-I,</u>	<u>B-1</u>	<u> </u>
COC Anomaly/Sa	COC Anomaly/Sample Acceptance Form completed?										

Comments:

ID.: LR - SLC

Rev No.: 4

Rev Date: 10/08/2019

Page: 1 of 1

CoC/Label Reconciliation Report WO# 1904267

LabNumber CoC Sample ID		SampleAlias 🗸	Sample Date/Time	Container √	Sample / BaseMatrix Comments
1904267-01 A TS2-I-191207	∞	正线系统 [4]	07-Dec-19 08:35 🗖	Amber Glass NM Bottle, 1L	Aqueous
1904267-01 B TS2-I-191207	ď		07-Dec-19 08:35 🔽	Amber Glass NM Bottle, 1L	Aqueous
1904267-01 C TS2-I-191207	d de la	THE RESERVE THE PERSON NAMED IN	07-Dec-19 08:35 🗹	Amber Glass NM Bottle, 1L	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	1			
Sample Custody Seals Intact?			1	
Adequate Sample Volume?	1			
Container Type Appropriate for Analysis(es)	1			
Preservation Documented: Na2S2O3 Trizma None Other		1	1	
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			/	

Verifed by/Date: WIN 12 09 19

Printed: 12/9/2019 9:38:35AM

Work Order 1904267

January 02, 2020

Vista Work Order No. 1904266

Mr. Scott Bourne CDIM Engineering 45 Polk Street, 3rd Floor San Francisco, CA 94102

Dear Mr. Bourne,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on December 09, 2019 under your Project Name 'LRTC Industrial Stormwater 101-004'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1904266 Page 1 of 15

Vista Work Order No. 1904266 Case Narrative

Sample Condition on Receipt:

One water sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1699

The sample was extracted and analyzed for chlorinated pesticides by EPA Method 1699 using a ZB-50 GC column.

Holding Times

As requested, the three bottles of the sample were composited prior to extraction. Approximately one liter of the composite was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the method acceptance criteria are listed in the table below:

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
1904266-01	TS2-E-191207	EPA Method 1699	13C10-Heptachlor	Н	152
B9L0133-BS1	B9L0133-BS1	EPA Method 1699	13C10-Heptachlor	Н	136

H = Recovery was outside laboratory acceptance criteria.

Work Order 1904266 Page 2 of 15

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 1904266 Page 3 of 15

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1904266-01	TS2-E-191207	07-Dec-19 08:45	09-Dec-19 07:16	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle 1I

Vista Project: 1904266 Client Project: LRTC Industrial Stormwater 101-004

Work Order 1904266 Page 4 of 15

ANALYTICAL RESULTS

Work Order 1904266 Page 5 of 15

Sample ID: Method Blank EPA Method 1699

Matrix: Aqueous QC Batch: B9L0133 Lab Sample: B9L0133-BLK1

Sample Size: 1.00 L Date Extracted: 12-Dec-2019 6:15 Date Analyzed: 31-Dec-19 18:29 Column: ZB-50

Analyte (Conc. (pg/L)	DL EMPC	Qualifiers		Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	10.3		J	IS	13C6-Hexachlorobenzene	32.1	5 - 120	
alpha-BHC	ND	5.45		IS	13C6-alpha-BHC	59.4	32 - 130	
Lindane (gamma-BHC)	ND	8.31		IS	13C6-Lindane (gamma-BHC)	60.0	11 - 120	
beta-BHC	ND	7.78		IS	13C6-beta-BHC	60.1	32 - 130	
delta-BHC	ND	6.25		IS	13C6-delta-BHC	60.6	36 - 137	
Heptachlor	ND	1.35		IS	13C10-Heptachlor	97.7	5 - 120	
Aldrin	ND	2.33		IS	13C12-Aldrin	81.0	5 - 120	
Oxychlordane	ND	8.71		IS	13C10-Oxychlordane	81.7	23 - 135	
cis-Heptachlor Epoxide	ND	5.58		IS	13C10-cis-Heptachlor Epoxide	82.0	27 - 137	
trans-Heptachlor Epoxic	de ND	23.0		IS	13C10-trans-Chlordane (gamma)	75.5	21 - 132	
trans-Chlordane (gamma	a) ND	7.86		IS	13C10-trans-Nonachlor	81.3	14 - 136	
trans-Nonachlor	ND	6.44		IS	13C9-Endosulfan I (alpha)	65.1	15 - 148	
cis-Chlordane (alpha)	ND	6.45		IS	13C12-2,4'-DDE	58.8	47 - 160	
Endosulfan I (alpha)	ND	12.1		IS	13C12-4,4'-DDE	79.5	47 - 160	
2,4'-DDE	ND	7.73		IS	13C12-Dieldrin	71.9	40 - 151	
4,4'-DDE	ND	7.18		IS	13C12-Endrin	73.4	35 - 155	
Dieldrin	4.08		J	IS	13C10-cis-Nonachlor	70.1	36 - 139	
Endrin	ND	4.86		IS	13C9-Endosulfan II (beta)	76.2	5 - 122	
cis-Nonachlor	ND	5.01		IS	13C12-2,4'-DDD	80.9	5 - 199	
Endosulfan II (beta)	ND	17.4		IS	13C12-2,4'-DDT	82.3	5 - 199	
2,4'-DDD	ND	14.0		IS	13C12-4,4'-DDD	86.1	5 - 120	
2,4'-DDT	ND	22.4		IS	13C12-4,4'-DDT	96.3	5 - 120	
4,4'-DDD	ND	15.4		IS	13C9-Endosulfan Sulfate	91.7	15 - 148	
4,4'-DDT	ND	23.1		IS	13C12-Methoxychlor	104	5 - 120	
Endosulfan Sulfate	ND	14.5		IS	13C10-Mirex	83.2	5 - 120	
4,4'-Methoxychlor	ND	3.00		IS	13C12-Endrin Aldehyde	60.3	15 - 148	
Mirex	ND	1.61		IS	13C12-Endrin Ketone	99.2	15 - 148	
Endrin Aldehyde	ND	13.1						
Endrin Ketone	ND	11.9						

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

Work Order 1904266 Page 6 of 15

Sample ID: OPR EPA Method 1699

Matrix: Aqueous QC Batch: B9L0133 Lab Sample: B9L0133-BS1

Sample Size: 1.00 L Date Extracted: 12-Dec-2019 6:15 Date Analyzed: 31-Dec-19 16:00 Column: ZB-50

Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
Hexachlorobenzene	997	1000	99.7	50 - 120	IS	13C6-Hexachlorobenzene	49.9	5 - 120
alpha-BHC	991	1000	99.1	50 - 120	IS	13C6-alpha-BHC	82.5	17 - 141
Lindane (gamma-BHC)	994	1000	99.4	50 - 120	IS	13C6-Lindane (gamma-BHC)	83.0	5 - 124
beta-BHC	1010	1000	101	50 - 120	IS	13C6-beta-BHC	82.3	17 - 141
delta-BHC	988	1000	98.8	50 - 120	IS	13C6-delta-BHC	82.2	16 - 150
Heptachlor	889	1000	88.9	50 - 120	IS	13C10-Heptachlor	136	5 - 128
Aldrin	954	1000	95.4	50 - 120	IS	13C12-Aldrin	102	5 - 126
Oxychlordane	894	1000	89.4	50 - 120	IS	13C10-Oxychlordane	117	5 - 144
cis-Heptachlor Epoxide	902	1000	90.2	50 - 120	IS	13C10-cis-Heptachlor Epoxide	114	8 - 146
trans-Heptachlor Epoxide	901	1000	90.1	50 - 120	IS	13C10-trans-Chlordane (gamma)	100	15 - 144
trans-Chlordane (gamma)	986	1000	98.6	50 - 120	IS	13C10-trans-Nonachlor	109	13 - 149
trans-Nonachlor	974	1000	97.4	50 - 120	IS	13C9-Endosulfan I (alpha)	98.1	5 - 144
cis-Chlordane (alpha)	763	1000	76.3	50 - 120	IS	13C12-2,4'-DDE	86.9	26 - 169
Endosulfan I (alpha)	923	1000	92.3	50 - 120	IS	13C12-4,4'-DDE	105	26 - 169
2,4'-DDE	903	1000	90.3	24 - 123	IS	13C12-Dieldrin	93.2	19 - 161
4,4'-DDE	885	1000	88.5	50 - 120	IS	13C12-Endrin	110	20 - 157
Dieldrin	946	1000	94.6	50 - 120	IS	13C10-cis-Nonachlor	95.7	17 - 154
Endrin	980	1000	98.0	50 - 120	IS	13C9-Endosulfan II (beta)	110	5 - 120
cis-Nonachlor	978	1000	97.8	50 - 120	IS	13C12-2,4'-DDD	107	14 - 200
Endosulfan II (beta)	864	1000	86.4	5 - 200	IS	13C12-2,4'-DDT	114	14 - 200
2,4'-DDD	1010	1000	101	50 - 120	IS	13C12-4,4'-DDD	118	14 - 200
2,4'-DDT	1090	1000	109	50 - 120	IS	13C12-4,4'-DDT	133	13 - 200
4,4'-DDD	1010	1000	101	42 - 120	IS	13C9-Endosulfan Sulfate	108	5 - 144
4,4'-DDT	1010	1000	101	50 - 120	IS	13C12-Methoxychlor	136	8 - 200
Endosulfan Sulfate	944	1000	94.4	50 - 120	IS	13C10-Mirex	106	5 - 138
4,4'-Methoxychlor	987	1000	98.7	50 - 120	IS	13C12-Endrin Aldehyde	96.4	5 - 144
Mirex	998	1000	99.8	50 - 120	IS	13C12-Endrin Ketone	130	5 - 144
Endrin Aldehyde	921	1000	92.1	50 - 134				
Endrin Ketone	928	1000	92.8	50 - 134				

LCL-UCL - Lower control limit - upper control limit

Work Order 1904266 Page 7 of 15

Sample ID: TS2-E-1	91207							EPA Met	hod 1699
Client Data Name: CDIM Eng Project: LRTC Indu Date Collected: 07-Dec-20	ustrial Stormwater 101-004	Sample Data Matrix: Sample Size:	Water 1.03 L	Lab S QC E	Sample: Batch: Analyzed	1904266-01 B9L0133	Date Received: Date Extracted: n: ZB-50	09-Dec-201 12-Dec-201	
Analyte Conc. (pg	g/L) DL	EMPC	Qual	ifiers	La	abeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene 34	.7		J, I	3	IS 13	C6-Hexachlorobenzene	77.1	5 - 120	
alpha-BHC 39	.6				IS 13	C6-alpha-BHC	86.4	32 - 130	
Lindane (gamma-BHC) 59	.0				IS 13	C6-Lindane (gamma-BHC)	93.3	11 - 120	
beta-BHC 68	.4				IS 13	C6-beta-BHC	91.5	32 - 130	
delta-BHC NI	6.86				IS 13	C6-delta-BHC	86.8	36 - 137	
Heptachlor NI	D	4.10			IS 13	C10-Heptachlor	152	5 - 120	Н
Aldrin NI	D 6.37				IS 13	C12-Aldrin	103	5 - 120	
Oxychlordane NI	23.3				IS 13	C10-Oxychlordane	110	23 - 135	
cis-Heptachlor Epoxide 60	.7				IS 13	C10-cis-Heptachlor Epoxide	115	27 - 137	
trans-Heptachlor Epoxide 23	5				IS 13	C10-trans-Chlordane (gamma	93.0	21 - 132	
trans-Chlordane (gamma) 57	.3				IS 13	C10-trans-Nonachlor	97.2	14 - 136	
trans-Nonachlor NI	D 19.7				IS 13	C9-Endosulfan I (alpha)	86.8	15 - 148	
cis-Chlordane (alpha) 54	.8				IS 13	C12-2,4'-DDE	76.8	47 - 160	
Endosulfan I (alpha) NI	35.0				IS 13	C12-4,4'-DDE	99.3	47 - 160	
2,4'-DDE NI	5.95				IS 13	C12-Dieldrin	82.7	40 - 151	
4,4'-DDE 46	.5				IS 13	C12-Endrin	89.6	35 - 155	
Dieldrin 62	1		В		IS 13	C10-cis-Nonachlor	75.9	36 - 139	
Endrin 22	6				IS 13	C9-Endosulfan II (beta)	92.2	5 - 122	
cis-Nonachlor NI	27.8				IS 13	C12-2,4'-DDD	103	5 - 199	
Endosulfan II (beta) NI	D	56.1			IS 13	C12-2,4'-DDT	109	5 - 199	
2,4'-DDD 72	.6				IS 13	C12-4,4'-DDD	107	5 - 120	
2,4'-DDT 40	.6				IS 13	C12-4,4'-DDT	119	5 - 120	
4,4'-DDD 86	.5					C9-Endosulfan Sulfate	89.6	15 - 148	
4,4'-DDT 76	.6				IS 13	C12-Methoxychlor	112	5 - 120	
Endosulfan Sulfate NI	69.0				IS 13	C10-Mirex	70.2	5 - 120	
4,4'-Methoxychlor NI	9.59				IS 13	C12-Endrin Aldehyde	59.9	15 - 148	
Mirex NI	5.70				IS 13	C12-Endrin Ketone	98.4	15 - 148	
Endrin Aldehyde NI	D 45.3								
Endrin Ketone 38	1								
DL - Sample specife estimated detec	v1 11 14					ovvor control limit unner control limit			

DL - Sample specifc estimated detection limit

EMPC - Estimated maximum possible concentration

LCL-UCL - Lower control limit - upper control limit

Page 8 of 15 Work Order 1904266

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1904266 Page 9 of 15

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

 $Current\ certificates\ and\ lists\ of\ licensed\ parameters\ are\ located\ in\ the\ Quality\ Assurance\ office\ and\ are\ available\ upon\ request.$

Work Order 1904266 Page 10 of 15

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

MATRIX: Non-Potable Water						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B					
Dilution GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C					
by GC/HRMS						
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Dioxin by GC/HRMS	EPA 613					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B					
Dibenzofurans by GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1904266 Page 12 of 15

PH	
The last	M

CHAIN OF CUSTODY RECORD 100 100 100 0.5°C

			_				-					-1/		2 04		100		-			0	
LABORATO	RY:	INSTRUCTIONS FO	R LAB PERS	SONNEL:			Analys	sis Tur	narou	d Time	X	Stand	ard	6 O	her _				_			
Vista Analytical Please send analytic results, electronic deliverables and							GeoTracker EDF required? pres X No Specify analytic/prep method and detection limit in report.															
1104 Windfield Way, El Dorado Hills CA 95762 the original chain-of-custody form to:							LOCUS EDD required? Yes X No Notify us of any anomalous peaks in GC or							us peaks in GC or other scans.								
(916) 673-15		bas@cdimengineering	The state of the s	dimengineer	ing.com			rt Resu			RL	X M					(Call in	nmedia	ately w	th any	questions or problems.
Karen Volpe		sab@cdimengineering				_	Repor	rt soil re	esults	to:		weight			dry w							
CDIM CONT		Project Manager:	Bryan Starks	i		L						NALY	'SIS F	REQU	ESTE							COC Number:
CDIM Engine	eering	Phone Number	415-498-053	5																		
45 Polk Stre	et, 3rd Floor	Sampled by:								ļ			l									
San Franciso	co, California 94102	Sample date(s):										1			1			1				Page of
PROJECT II	NFORMATION																					
Job Name:	LRTC Industrial Stormwater					1699)																SDG number:
Job #:	101-004					Pesticides (EPA																
Address:	402 Wright Avenue, Richmond CA 94804					ides																
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	Pestic																Sample Specific Notes:
	TS2-E- 19 17 07	12/7/19	8:45	w	3	Х																Composite
		1 4																				
		22.23		Field Filt	ered (X):																	
	ation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ; 4=					1																
Special Ins	tructions/QC Requirements & Com	ments: Level II Re	port. Repor	t with rep	orting lim	it and	d met	thod	detec	tion	limit.	Anal	yze a	ınd re	port	only t	he m	etals	s liste	ed ab	ove.	
Relinquished	by:	Company:		Date/Time:		Recei	ived by	v:							70	Compa	inv:					Date/Time:
	my of	COIM		12/7/4	1000		4	1/2	_	-					0	V	AL					12/09/19 07/6
Relinquished	by:	Company:		Date/Time:		Recei	ived by	y:							。 (Compa	iny:					Date/Time:
Relinquished	by:	Company:		Date/Time:		Recei	ived by	y:	_						$\overline{}$	Compa	iny:					Date/Time:
	x = Samples released to a secured, lock	ked area.						• = Sa	mples	recei	ved fro	m a se	cured									
· · ·	SAMPLERS NAME	Byan St	enhs						ı	MOBIL	E#			80	8	50	6	12	30			
	SAMPLERS SIGNATURE	· de	18	1					ı	DATE	TIME		(2/					200			
			-																			

Sample Log-In Checklist

Vista Work Orde	r#:)90	4266				_		std s	45	–
Samples	Date/Tim	ie		Ini	itials:		Location	on:	WR-	2	
Arrival:	12/09	/19 0	0716		ajn	·	Shelf/F	Rack	N/	A	
Delivered By:	FedEx	UPS	On Tra	ac	GSO	DHI		Hand elive		Oth	ner
Preservation:	To	e	Blu	ue lo	се		Dry Id	e		No	ne
Temp °C: 0.5	(uncorr	ected)	Probe use	- d /	Q , N		Therm		40 v 1D.	DT-	4
Temp °C: 0.5	(correc	ted)	Probe use	ea	I)/ N		inerm	ome	ter iD:		
								- 11			
				SER			加亚加		YES	NO	NA
Shipping Contain	er(s) Intac	t?							V		
Shipping Custody	y Seals Int	act?									/
Airbill	Trk	# 778	6 90	8 2	2 190	50			V		
Shipping Docume							Service To		~		
Shipping Contain	ner	(Vista		Client	R	etain	Re	eturn	Dis	pose
Chain of Custody	/ / Sample	Docume	ntation Pr	ese	nt?		'				
Chain of Custody / Sample Documentation Present? Chain of Custody / Sample Documentation Complete?									V		
Holding Time Acceptable?									V		
	Date/Tin	 1е		In	itials:		Locati	on:	1112-2		
Logged In:	12 69 19	9 090		ĺ	W)S		Shelf/F			B-1	
COC Anomaly/Sa	ample Acc	eptance	Form com	nple	ted?					1	1

Comments:

ID.: LR – SLC Rev No.: 4 Rev Date: 10/08/2019

Work Order 1904266 Page 14 of 15

Page: 1 of 1

CoC/Label Reconciliation Report WO# 1904266

LabNumber CoC Sample ID		SampleAlias 🗸	Sample Date/Time	Container √	✓ Sample ✓ BaseMatrix Comments
1904266-01 A TS2-E-191207	ď	A STATE OF STREET	07-Dec-19 08:45 🗹	Amber Glass NM Bottle, 1L	Aqueous
1904266-01 B TS2-E-191207	₫		07-Dec-19 08:45	Amber Glass NM Bottle, 1L	Aqueous
1904266-01 C TS2-E-191207	ď		07-Dec-19 08:45 🗹	Amber Glass NM Bottle, 1L	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	1			
Sample Custody Seals Intact?	8.9		√	
Adequate Sample Volume?	1			
Container Type Appropriate for Analysis(es)	1			
Preservation Documented: Na2S2O3 Trizma None Other		√	1]
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			/	

Verifed by/Date: 12 09 19

Printed: 12/9/2019 9:15:12AM

Work Order 1904266

February 03, 2020

Vista Work Order No. 1904366

Mr. Scott Bourne CDIM Engineering 45 Polk Street, 3rd Floor San Francisco, CA 94102

Dear Mr. Bourne,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on December 19, 2019 under your Project Name 'LRTC Industrial Stormwater / 101-004'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1904366 Page 1 of 15

Vista Work Order No. 1904366 Case Narrative

Sample Condition on Receipt:

One water sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1699

As requested, the sample was composited prior to the aliquot taken for extraction.

The sample was extracted and analyzed for chlorinated pesticides by EPA Method 1699 using a ZB-50 GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the method acceptance criteria are listed in the table below:

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
1904366-01	TS2-I-191218	EPA Method 1699	13C12-2,4'-DDE	Н	42.2
1904366-01	TS2-I-191218	EPA Method 1699	13C12-4,4'-DDE	Н	39.9
1904366-01	TS2-I-191218	EPA Method 1699	13C10-cis-Nonachlor	Н	30.8

H = Recovery was outside laboratory acceptance criteria.

Work Order 1904366 Page 2 of 15

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 1904366 Page 3 of 15

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1904366-01	TS2-I-191218	18-Dec-19 10:55	19-Dec-19 10:23	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle. 1L

Vista Project: 1904366 Client Project: LRTC Industrial Stormwater / 101-004

Work Order 1904366 Page 4 of 15

ANALYTICAL RESULTS

Work Order 1904366 Page 5 of 15

Sample ID: Me	thod Blank							EPA Met	thod 1699
Matrix: Aqueous Sample Size: 1.00 L	5	QC Batch: B9L0235 Date Extracted: 23-Dec-2019 7:20				Sample: B9L0235-BLK1 e Analyzed: 03-Jan-20 12:06 Col	umn: ZB-50		
Analyte Con	nc. (pg/L)	RL	MDL	Qualifiers	Labeled Standard %R			LCL-UCL	Qualifiers
Hexachlorobenzene	8.09	40.0	6.78	J	IS	13C6-Hexachlorobenzene	54.6	5 - 120	
alpha-BHC	ND	40.0	7.05		IS	13C6-alpha-BHC	87.8	32 - 130	
Lindane (gamma-BHC)	ND	40.0	4.96		IS	13C6-Lindane (gamma-BHC)	94.5	11 - 120	
beta-BHC	ND	40.0	6.99		IS	13C6-beta-BHC	99.6	32 - 130	
delta-BHC	ND	40.0	7.60		IS	13C6-delta-BHC	97.5	36 - 137	
Heptachlor	ND	40.0	14.0		IS	13C10-Heptachlor	105	5 - 120	
Aldrin	ND	40.0	8.72		IS	13C12-Aldrin	90.9	5 - 120	
Oxychlordane	ND	40.0	15.4		IS	13C10-Oxychlordane	105	23 - 135	
cis-Heptachlor Epoxide	ND	40.0	9.60		IS	13C10-cis-Heptachlor Epoxide	105	27 - 137	
trans-Heptachlor Epoxide	ND	40.0	32.3		IS	13C10-trans-Chlordane (gamma)	96.3	21 - 132	
trans-Chlordane (gamma)	ND	40.0	16.0		IS	13C10-trans-Nonachlor	98.4	14 - 136	
trans-Nonachlor	ND	40.0	15.0		IS	13C9-Endosulfan I (alpha)	79.5	15 - 148	
cis-Chlordane (alpha)	ND	40.0	22.7		IS	13C12-2,4'-DDE	83.6	47 - 160	
Endosulfan I (alpha)	ND	200	77.9		IS	13C12-4,4'-DDE	103	47 - 160	
2,4'-DDE	ND	40.0	25.2		IS	13C12-Dieldrin	96.9	40 - 151	
4,4'-DDE	ND	40.0	8.61		IS	13C12-Endrin	110	35 - 155	
Dieldrin	ND	40.0	10.5		IS	13C10-cis-Nonachlor	97.4	36 - 139	
Endrin	ND	40.0	19.6		IS	13C9-Endosulfan II (beta)	85.9	5 - 122	
cis-Nonachlor	ND	40.0	9.28		IS	13C12-2,4'-DDD	110	5 - 199	
Endosulfan II (beta)	ND	200	70.7		IS	13C12-2,4'-DDT	101	5 - 199	
2,4'-DDD	ND	40.0	9.64		IS	13C12-4,4'-DDD	108	5 - 120	
2,4'-DDT	ND	40.0	17.2		IS	13C12-4,4'-DDT	105	5 - 120	
4,4'-DDD	ND	40.0	13.8		IS	13C9-Endosulfan Sulfate	87.0	15 - 148	
4,4'-DDT	ND	40.0	17.2		IS	13C12-Methoxychlor	86.8	5 - 120	
Endosulfan Sulfate	ND	200	70.9		IS	13C10-Mirex	80.6	5 - 120	
4,4'-Methoxychlor	ND	40.0	67.9		IS	13C12-Endrin Aldehyde	60.5	15 - 148	
Mirex	ND	40.0	6.64		IS	13C12-Endrin Ketone	84.1	15 - 148	
Endrin Aldehyde	ND	200	70.9						
Endrin Ketone	ND	200	47.6						

MDL - Method detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Work Order 1904366 Page 6 of 15

Sample ID: OPR EPA Method 1699

Matrix: Aqueous QC Batch: B9L0235 Lab Sample: B9L0235-BS1

Sample Size: 1.00 L Date Extracted: 23-Dec-2019 7:20 Date Analyzed: 01-Feb-20 15:31 Column: ZB-50

Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
Hexachlorobenzene	1030	1000	103	50 - 120	IS	13C6-Hexachlorobenzene	64.2	5 - 120
alpha-BHC	1030	1000	103	50 - 120	IS	13C6-alpha-BHC	86.6	17 - 141
Lindane (gamma-BHC)	756	1000	75.6	50 - 120	IS	13C6-Lindane (gamma-BHC)	113	5 - 124
beta-BHC	998	1000	99.8	50 - 120	IS	13C6-beta-BHC	92.1	17 - 141
delta-BHC	1030	1000	103	50 - 120	IS	13C6-delta-BHC	89.0	16 - 150
Heptachlor	997	1000	99.7	50 - 120	IS	13C10-Heptachlor	105	5 - 128
Aldrin	992	1000	99.2	50 - 120	IS	13C12-Aldrin	98.1	5 - 126
Oxychlordane	993	1000	99.3	50 - 120	IS	13C10-Oxychlordane	115	5 - 144
cis-Heptachlor Epoxide	951	1000	95.1	50 - 120	IS	13C10-cis-Heptachlor Epoxide	120	8 - 146
trans-Heptachlor Epoxide	986	1000	98.6	50 - 120	IS	13C10-trans-Chlordane (gamma)	121	15 - 144
trans-Chlordane (gamma)	1020	1000	102	50 - 120	IS	13C10-trans-Nonachlor	118	13 - 149
trans-Nonachlor	997	1000	99.7	50 - 120	IS	13C9-Endosulfan I (alpha)	97.4	5 - 144
cis-Chlordane (alpha)	701	1000	70.1	50 - 120	IS	13C12-2,4'-DDE	73.4	26 - 169
Endosulfan I (alpha)	939	1000	93.9	50 - 120	IS	13C12-4,4'-DDE	115	26 - 169
2,4'-DDE	1010	1000	101	24 - 123	IS	13C12-Dieldrin	103	19 - 161
4,4'-DDE	966	1000	96.6	50 - 120	IS	13C12-Endrin	113	20 - 157
Dieldrin	1010	1000	101	50 - 120	IS	13C10-cis-Nonachlor	111	17 - 154
Endrin	1120	1000	112	50 - 120	IS	13C9-Endosulfan II (beta)	113	5 - 120
cis-Nonachlor	1020	1000	102	50 - 120	IS	13C12-2,4'-DDD	114	14 - 200
Endosulfan II (beta)	1030	1000	103	5 - 200	IS	13C12-2,4'-DDT	109	14 - 200
2,4'-DDD	1020	1000	102	50 - 120	IS	13C12-4,4'-DDD	112	14 - 200
2,4'-DDT	1080	1000	108	50 - 120	IS	13C12-4,4'-DDT	119	13 - 200
4,4'-DDD	1040	1000	104	42 - 120	IS	13C9-Endosulfan Sulfate	104	5 - 144
4,4'-DDT	1030	1000	103	50 - 120	IS	13C12-Methoxychlor	107	8 - 200
Endosulfan Sulfate	1040	1000	104	50 - 120	IS	13C10-Mirex	105	5 - 138
4,4'-Methoxychlor	1000	1000	100	50 - 120	IS	13C12-Endrin Aldehyde	62.2	5 - 144
Mirex	1030	1000	103	50 - 120	IS	13C12-Endrin Ketone	86.5	5 - 144
Endrin Aldehyde	951	1000	95.1	50 - 134				
Endrin Ketone	972	1000	97.2	50 - 134				

LCL-UCL - Lower control limit - upper control limit

Work Order 1904366 Page 7 of 15

Client Data			Sample Data			Labo	oratory	⁷ Data			
Name:	CDIM Engineering		Matrix:	Water		Lab Sample: 1904366-01 Date Received: 19-Dec-2019 10					
Project:	LRTC Industrial Sto	ormwater / 101-004	Sample Size:	0.946 L		QC	Batch	: B9L0235	Date Extracted:	23-Dec-201	9 7:20
Date Collected:	18-Dec-2019 10:55					Da	te Anal	yzed: 03-Jan-20 13:43 Column	: ZB-50		
Analyte	Conc. (pg/L)	RL		MDL	Qualit	fiers		Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	2130	42.3		7.17	В		IS	13C6-Hexachlorobenzene	88.4	5 - 120	
alpha-BHC	73.8	42.3		7.45			IS	13C6-alpha-BHC	62.2	32 - 130	
Lindane (gamma-BF		42.3		5.24			IS	13C6-Lindane (gamma-BHC)	88.3	11 - 120	
beta-BHC	45.4	42.3		7.39			IS	13C6-beta-BHC	64.8	32 - 130	
delta-BHC	ND	42.3		8.03			IS	13C6-delta-BHC	67.9	36 - 137	
Heptachlor	ND	42.3		14.8			IS	13C10-Heptachlor	89.3	5 - 120	
Aldrin	7.70	42.3		9.22	J		IS	13C12-Aldrin	69.0	5 - 120	
Oxychlordane	ND	42.3		16.3			IS	13C10-Oxychlordane	56.0	23 - 135	
cis-Heptachlor Epox	ide 84.5	42.3		10.1			IS	13C10-cis-Heptachlor Epoxide	35.2	27 - 137	
trans-Heptachlor Ep	oxide ND	42.3		34.1			IS	13C10-trans-Chlordane (gamma) 27.8	21 - 132	
trans-Chlordane (gar	mma) 736	42.3		16.9			IS	13C10-trans-Nonachlor	41.6	14 - 136	
trans-Nonachlor	425	42.3		15.9			IS	13C9-Endosulfan I (alpha)	39.3	15 - 148	
cis-Chlordane (alpha	n) 789	42.3		24.0			IS	13C12-2,4'-DDE	42.2	47 - 160	Н
Endosulfan I (alpha)	ND	211		82.3			IS	13C12-4,4'-DDE	39.9	47 - 160	Н
2,4'-DDE	252	42.3		26.6			IS	13C12-Dieldrin	52.0	40 - 151	
4,4'-DDE	4210	42.3		9.10			IS	13C12-Endrin	50.7	35 - 155	
Dieldrin	1100	42.3		11.1			IS	13C10-cis-Nonachlor	30.8	36 - 139	Н
Endrin	341	42.3		20.7			IS	13C9-Endosulfan II (beta)	33.8	5 - 122	
cis-Nonachlor	ND	42.3		9.81			IS	13C12-2,4'-DDD	59.7	5 - 199	
Endosulfan II (beta)	ND	211		74.7			IS	13C12-2,4'-DDT	69.7	5 - 199	
2,4'-DDD	1640	42.3		10.2			IS	13C12-4,4'-DDD	45.6	5 - 120	
2,4'-DDT	2570	42.3		18.2			IS	13C12-4,4'-DDT	46.9	5 - 120	
4,4'-DDD	2780	42.3		14.6			IS	13C9-Endosulfan Sulfate	22.8	15 - 148	
4,4'-DDT	9600	42.3		18.2			IS	13C12-Methoxychlor	31.7	5 - 120	
Endosulfan Sulfate	ND	211		74.9			IS	13C10-Mirex	24.7	5 - 120	
4,4'-Methoxychlor	ND	42.3		71.8			IS	13C12-Endrin Aldehyde	30.7	15 - 148	
Mirex	ND	42.3		7.02			IS	13C12-Endrin Ketone	27.0	15 - 148	
Endrin Aldehyde	ND	211		74.9							
Endrin Ketone	ND	211		50.3							
			Method detection limit			Т	CLUC	L - Lower control limit - upper control limit			

RL - Reporting limit

Sample ID: TS2-I-191218

EPA Method 1699

Work Order 1904366 Page 8 of 15

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1904366 Page 9 of 15

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1904366 Page 10 of 15

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue							
Description of Test	Method						
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B						
Dilution GC/HRMS							
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A						
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C						
by GC/HRMS							
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699						
HRGC/HRMS							
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B						
GC/HRMS							
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA						
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A						

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

MATRIX: Non-Potable Water				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Dioxin by GC/HRMS	EPA 613			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B			
Dibenzofurans by GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1904366 Page 12 of 15

-	\			ı	J	į	2	V	į			
	J	2	7	K	٩		j	ĺ	2	ĺ	ı	
	-	H	0	1	×	7	E	R	ı	H	G	

CHAIN OF CUSTODY RECORD

1904366 0.6°C

LABORATO	DRY:	INSTRUCTIONS FO	DELAR DED	SONNEL:			Analysis	Turnarou	ud Time	X Sta	ndard	D_Other		1793	on v	00 (/	
Vista Analyt	ical eld Way, El Dorado Hills CA 95762 520	Please send analytic and the original chain bas@cdimengineering sab@cdimengineering	c results, electin-of-custody	ctronic deliv form to:			GeoTrac LOCUS Report F	ker EDF EDD requ Results to oil results	required?	?` Yes	Yes > X No (MDL	No	y weight	Noti	fy us of any	anomalo	thod and detection limit in report. hus peaks in GC or other scans. y questions or problems.	
CDIM CON		Project Manager:	Bryan Stark	S								REQUES				COC Number:		
CDIM Engin	eering	Phone Number	415-498-053	35												T		
45 Polk Stre	et, 3rd Floor	Sampled by:																
San Francis	co, California 94102	Sample date(s):												3		W	Page of	
PROJECT I	NFORMATION																	
Job Name:	LRTC Industrial Stormwater					(669)											SDG number:	
Job #:	161-004					Pesticides (EPA 1699)												
Address:	402 Wright Avenue, Richmond CA 94804					ides												
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	Pestic											Sample Specific Notes:	
	TS2-1-191218	1218/19	1055	W	3	X											Composite	
										-1								
	130																	
				Field Filt	ered (X):													
Preserv	vation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ; 4	4=HNO ₃ ; 5=NaOH; 6= Oth	ner			1												
Special Ins	structions/QC Requirements & Co	mments: Level II Re	eport, Repo	rt with rep	orting lin	nit ar	nd meth	od dete	ection	limit. A	nalyze	and repo	ort only	the meta	als listed	above.		
Relinquished	by:	Company:		Date/Time:		Rece	eived by:	1110	alle				Compa	ny:	21		Date/Time:	
Relinquished	by	Company:		12/18/1 Date/Time:	9 103	Rece	eived by:	MX	Allo			0	Compa		3h		12/19/19 1023 Date/Tithe:	
-		В										0						
Relinquished	by:	Company:		Date/Time:		Rece	eived by:					0	Compa	ny:			Date/Time:	
	x = Samples released to a secured, Ic	cked area.					.0	= Sample	es receiv	ed from a	a secure	i, locked a	rea					
	SAMPLERS NAME	Bryan Star	43 -						MOBIL	E#		808	258	92:	30		1	
	SAMPLERS SIGNATUR		K						DATE /	TIME		12/18			205			

Sample Log-In Checklist

Vista Work Orde	er#:	14366			Page #	. 3	of	_
Samples Arrival:	Date/Time	23	Initials:		_ocation:	wr-2 Na		
Delivered By:	FedEx UPS	On Tra	c GSO	DHL	Hand Delivere	ed	Oth	ner
Preservation:	lce	Blu	ue Ice		Dry Ice		No	ne
Temp °C: 0,6		Probe use	ed: Y /N		Thermomete	er ID:	IR-L	L
			Same San Contraction			YES	NO	NA
Shipping Contain	er(s) Intact?					1		
Shipping Custody								1
Airbill —	Trk # 1779	0 7457 9	252			1		
Shipping Docume	entation Present?					1		
Shipping Contain	er	Vista	Client	Reta	ain Ret	urn	Disp	ose
Chain of Custody	/ Sample Docum	entation Pr	esent?			1		
Chain of Custody / Sample Documentation Complete?								
Holding Time Acc	ceptable?					/		
Logged In:	Date/Time	03	Initials:		_ocation: Shelf/Rack:_		C-4	
COC Anomaly/Sa	ample Acceptance	Form com	pleted?				V	1

Comments:

ID.: LR - SLC

Rev No.: 4

Rev Date: 10/08/2019

Page: 1 of 1

CoC/Label Reconciliation Report WO# 1904366

LabNumber CoC Sample ID	,	SampleAlias	Sample Date/Time	Container	Sample BaseMatrix Comments
1904366-01 A TS2-I-191218	ď		18-Dec-19 10:55	Amber Glass NM Bottle, 1L	Aqueous
1904366-01 B TS2-I-191218			18-Dec-19 10:55	Amber Glass NM Bottle, 1L	Aqueous
1904366-01 C TS2-I-191218	Ø		18-Dec-19 10:55	Amber Glass NM Bottle, 1L	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

	Yes	No	NA	Comments:
Sample Container Intact?	/			
Sample Custody Seals Intact?			1	1
Adequate Sample Volume?				
Container Type Appropriate for Analysis(es)	1			
Preservation Documented: Na2S2O3 Trizma None Other	7.	1	1	
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			/	

Verifed by/Date: +106 12/19/19

Printed: 12/19/2019 11:17:46AM

February 03, 2020

Vista Work Order No. 1904367

Mr. Scott Bourne CDIM Engineering 45 Polk Street, 3rd Floor San Francisco, CA 94102

Dear Mr. Bourne,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on December 19, 2019 under your Project Name 'LRTC Industrial Stormwater / 101-004'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 1904367 Page 1 of 15

Vista Work Order No. 1904367 Case Narrative

Sample Condition on Receipt:

One water sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 1699

As requested, the sample was composited prior to the aliquot taken for extraction.

The sample was extracted and analyzed for chlorinated pesticides by EPA Method 1699 using a ZB-50 GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

Labeled standard recoveries for all QC and field samples were within method acceptance criteria.

Work Order 1904367 Page 2 of 15

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 1904367 Page 3 of 15

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1904367-01	TS2-E-191218	18-Dec-19 10:49	19-Dec-19 10:23	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L

Vista Project: 1904367 Client Project: LRTC Industrial Stormwater / 101-004

Work Order 1904367 Page 4 of 15

ANALYTICAL RESULTS

Work Order 1904367 Page 5 of 15

Sample ID: Met	thod Blank							EPA Met	thod 1699
Matrix: Aqueous Sample Size: 1.00 L		QC Batch: B9L0235 Date Extracted: 23-Dec-2019 7:20				Sample: B9L0235-BLK1 e Analyzed: 03-Jan-20 12:06 Col	umn: ZB-50		
Analyte Cor	ic. (pg/L)	RL	MDL	Qualifiers]	Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	8.09	40.0	6.78	J	IS	13C6-Hexachlorobenzene	54.6	5 - 120	
alpha-BHC	ND	40.0	7.05		IS	13C6-alpha-BHC	87.8	32 - 130	
Lindane (gamma-BHC)	ND	40.0	4.96		IS	13C6-Lindane (gamma-BHC)	94.5	11 - 120	
beta-BHC	ND	40.0	6.99		IS	13C6-beta-BHC	99.6	32 - 130	
delta-BHC	ND	40.0	7.60		IS	13C6-delta-BHC	97.5	36 - 137	
Heptachlor	ND	40.0	14.0		IS	13C10-Heptachlor	105	5 - 120	
Aldrin	ND	40.0	8.72		IS	13C12-Aldrin	90.9	5 - 120	
Oxychlordane	ND	40.0	15.4		IS	13C10-Oxychlordane	105	23 - 135	
cis-Heptachlor Epoxide	ND	40.0	9.60		IS	13C10-cis-Heptachlor Epoxide	105	27 - 137	
trans-Heptachlor Epoxide	ND	40.0	32.3		IS	13C10-trans-Chlordane (gamma)	96.3	21 - 132	
trans-Chlordane (gamma)	ND	40.0	16.0		IS	13C10-trans-Nonachlor	98.4	14 - 136	
trans-Nonachlor	ND	40.0	15.0		IS	13C9-Endosulfan I (alpha)	79.5	15 - 148	
cis-Chlordane (alpha)	ND	40.0	22.7		IS	13C12-2,4'-DDE	83.6	47 - 160	
Endosulfan I (alpha)	ND	200	77.9		IS	13C12-4,4'-DDE	103	47 - 160	
2,4'-DDE	ND	40.0	25.2		IS	13C12-Dieldrin	96.9	40 - 151	
4,4'-DDE	ND	40.0	8.61		IS	13C12-Endrin	110	35 - 155	
Dieldrin	ND	40.0	10.5		IS	13C10-cis-Nonachlor	97.4	36 - 139	
Endrin	ND	40.0	19.6		IS	13C9-Endosulfan II (beta)	85.9	5 - 122	
cis-Nonachlor	ND	40.0	9.28		IS	13C12-2,4'-DDD	110	5 - 199	
Endosulfan II (beta)	ND	200	70.7		IS	13C12-2,4'-DDT	101	5 - 199	
2,4'-DDD	ND	40.0	9.64		IS	13C12-4,4'-DDD	108	5 - 120	
2,4'-DDT	ND	40.0	17.2		IS	13C12-4,4'-DDT	105	5 - 120	
4,4'-DDD	ND	40.0	13.8		IS	13C9-Endosulfan Sulfate	87.0	15 - 148	
4,4'-DDT	ND	40.0	17.2		IS	13C12-Methoxychlor	86.8	5 - 120	
Endosulfan Sulfate	ND	200	70.9		IS	13C10-Mirex	80.6	5 - 120	
4,4'-Methoxychlor	ND	40.0	67.9		IS	13C12-Endrin Aldehyde	60.5	15 - 148	
Mirex	ND	40.0	6.64		IS	13C12-Endrin Ketone	84.1	15 - 148	
Endrin Aldehyde	ND	200	70.9						
Endrin Ketone	ND	200	47.6						

MDL - Method detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Work Order 1904367 Page 6 of 15

Sample ID: OPR EPA Method 1699

Matrix: Aqueous QC Batch: B9L0235 Lab Sample: B9L0235-BS1

Sample Size: 1.00 L Date Extracted: 23-Dec-2019 7:20 Date Analyzed: 01-Feb-20 15:31 Column: ZB-50

Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
Hexachlorobenzene	1030	1000	103	50 - 120	IS	13C6-Hexachlorobenzene	64.2	5 - 120
alpha-BHC	1030	1000	103	50 - 120	IS	13C6-alpha-BHC	86.6	17 - 141
Lindane (gamma-BHC)	756	1000	75.6	50 - 120	IS	13C6-Lindane (gamma-BHC)	113	5 - 124
beta-BHC	998	1000	99.8	50 - 120	IS	13C6-beta-BHC	92.1	17 - 141
delta-BHC	1030	1000	103	50 - 120	IS	13C6-delta-BHC	89.0	16 - 150
Heptachlor	997	1000	99.7	50 - 120	IS	13C10-Heptachlor	105	5 - 128
Aldrin	992	1000	99.2	50 - 120	IS	13C12-Aldrin	98.1	5 - 126
Oxychlordane	993	1000	99.3	50 - 120	IS	13C10-Oxychlordane	115	5 - 144
cis-Heptachlor Epoxide	951	1000	95.1	50 - 120	IS	13C10-cis-Heptachlor Epoxide	120	8 - 146
trans-Heptachlor Epoxide	986	1000	98.6	50 - 120	IS	13C10-trans-Chlordane (gamma)	121	15 - 144
trans-Chlordane (gamma)	1020	1000	102	50 - 120	IS	13C10-trans-Nonachlor	118	13 - 149
trans-Nonachlor	997	1000	99.7	50 - 120	IS	13C9-Endosulfan I (alpha)	97.4	5 - 144
cis-Chlordane (alpha)	701	1000	70.1	50 - 120	IS	13C12-2,4'-DDE	73.4	26 - 169
Endosulfan I (alpha)	939	1000	93.9	50 - 120	IS	13C12-4,4'-DDE	115	26 - 169
2,4'-DDE	1010	1000	101	24 - 123	IS	13C12-Dieldrin	103	19 - 161
4,4'-DDE	966	1000	96.6	50 - 120	IS	13C12-Endrin	113	20 - 157
Dieldrin	1010	1000	101	50 - 120	IS	13C10-cis-Nonachlor	111	17 - 154
Endrin	1120	1000	112	50 - 120	IS	13C9-Endosulfan II (beta)	113	5 - 120
cis-Nonachlor	1020	1000	102	50 - 120	IS	13C12-2,4'-DDD	114	14 - 200
Endosulfan II (beta)	1030	1000	103	5 - 200	IS	13C12-2,4'-DDT	109	14 - 200
2,4'-DDD	1020	1000	102	50 - 120	IS	13C12-4,4'-DDD	112	14 - 200
2,4'-DDT	1080	1000	108	50 - 120	IS	13C12-4,4'-DDT	119	13 - 200
4,4'-DDD	1040	1000	104	42 - 120	IS	13C9-Endosulfan Sulfate	104	5 - 144
4,4'-DDT	1030	1000	103	50 - 120	IS	13C12-Methoxychlor	107	8 - 200
Endosulfan Sulfate	1040	1000	104	50 - 120	IS	13C10-Mirex	105	5 - 138
4,4'-Methoxychlor	1000	1000	100	50 - 120	IS	13C12-Endrin Aldehyde	62.2	5 - 144
Mirex	1030	1000	103	50 - 120	IS	13C12-Endrin Ketone	86.5	5 - 144
Endrin Aldehyde	951	1000	95.1	50 - 134				
Endrin Ketone	972	1000	97.2	50 - 134				

LCL-UCL - Lower control limit - upper control limit

Work Order 1904367 Page 7 of 15

Client Data			Sample Data			Labo	ratory	y Data			
Name: CD	IM Engineering	;	Matrix:	Water		Lab	Samp	ole: 1904367-01	Date Received:	19-Dec-201	9 10:23
Project: LR	ΓC Industrial St	ormwater / 101-004	Sample Size:	0.952 L		QC	Batch	: B9L0235	Date Extracted:	23-Dec-201	9 7:20
Date Collected: 18-1	Dec-2019 10:49	9				Dat	e Anal	yzed: 03-Jan-20 14:32 Column	: ZB-50		
	ic. (pg/L)	RL		MDL	Quali	fiers		Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	88.0	42.0		7.12	В		IS	13C6-Hexachlorobenzene	74.3	5 - 120	
alpha-BHC	57.4	42.0		7.40			IS	13C6-alpha-BHC	81.4	32 - 130	
Lindane (gamma-BHC)	62.8	42.0		5.21			IS	13C6-Lindane (gamma-BHC)	89.2	11 - 120	
beta-BHC	83.1	42.0		7.34			IS	13C6-beta-BHC	89.6	32 - 130	
delta-BHC	ND	42.0		7.98			IS	13C6-delta-BHC	85.6	36 - 137	
Heptachlor	ND	42.0		14.7			IS	13C10-Heptachlor	108	5 - 120	
Aldrin	ND	42.0		9.16			IS	13C12-Aldrin	82.5	5 - 120	
Oxychlordane	ND	42.0		16.2			IS	13C10-Oxychlordane	84.1	23 - 135	
cis-Heptachlor Epoxide	ND	42.0		10.1			IS	13C10-cis-Heptachlor Epoxide	77.7	27 - 137	
trans-Heptachlor Epoxide	218	42.0		33.9			IS	13C10-trans-Chlordane (gamma		21 - 132	
trans-Chlordane (gamma)	61.7	42.0		16.8			IS	13C10-trans-Nonachlor	66.5	14 - 136	
trans-Nonachlor	39.6	42.0		15.8	J		IS	13C9-Endosulfan I (alpha)	60.3	15 - 148	
cis-Chlordane (alpha)	72.1	42.0		23.8			IS	13C12-2,4'-DDE	65.2	47 - 160	
Endosulfan I (alpha)	ND	210		81.8			IS	13C12-4,4'-DDE	88.5	47 - 160	
2,4'-DDE	17.7	42.0		26.5	J		IS	13C12-Dieldrin	74.7	40 - 151	
4,4'-DDE	134	42.0		9.04			IS	13C12-Endrin	81.8	35 - 155	
Dieldrin	556	42.0		11.0			IS	13C10-cis-Nonachlor	66.2	36 - 139	
Endrin	202	42.0		20.6			IS	13C9-Endosulfan II (beta)	61.7	5 - 122	
cis-Nonachlor	ND	42.0		9.74			IS	13C12-2,4'-DDD	97.3	5 - 199	
Endosulfan II (beta)	ND	210		74.2			IS	13C12-2,4'-DDT	101	5 - 199	
2,4'-DDD	102	42.0		10.1			IS	13C12-4,4'-DDD	90.5	5 - 120	
2,4'-DDT	109	42.0		18.1			IS	13C12-4,4'-DDT	98.0	5 - 120	
4,4'-DDD	149	42.0		14.5			IS	13C9-Endosulfan Sulfate	58.4	15 - 148	
4,4'-DDT	219	42.0		18.1			IS	13C12-Methoxychlor	64.5	5 - 120	
Endosulfan Sulfate	ND	210		74.4			IS	13C10-Mirex	49.7	5 - 120	
4,4'-Methoxychlor	ND	42.0		71.3			IS	13C12-Endrin Aldehyde	65.3	15 - 148	
Mirex	ND	42.0		6.97			IS	13C12-Endrin Ketone	58.5	15 - 148	
Endrin Aldehyde	ND	210		74.4							
Endrin Ketone	299	210		50.0							
		MDL -	Method detection limit			L	.CL-UC	L - Lower control limit - upper control limit	t		

EPA Method 1699

RL - Reporting limit

Sample ID: TS2-E-191218

Work Order 1904367 Page 8 of 15

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1904367 Page 9 of 15

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 1904367 Page 10 of 15

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue					
Description of Test	Method				
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B				
Dilution GC/HRMS					
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A				
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C				
by GC/HRMS					
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699				
HRGC/HRMS					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B				
GC/HRMS					
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA				
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A				

MATRIX: Drinking Water					
Description of Test	Method				
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA				
	1613/1613B				
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009				

Work Order 1904367 Page 11 of 15

MATRIX: Non-Potable Water							
Description of Test	Method						
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B						
Dilution GC/HRMS							
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A						
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C						
by GC/HRMS							
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699						
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537						
Dioxin by GC/HRMS	EPA 613						
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B						
Dibenzofurans by GC/HRMS							
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA						
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A						

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 1904367 Page 12 of 15

-			Ų.				V	1		
64	J	2		K	1	j		2	ı	ı
		_		_	-	E			щ	-

CHAIN OF CUSTODY RECORD

1904367 0.6°C

LABORATO	DRY:	INSTRUCTIONS FO	RIARPER	SONNEL:	-	-	Analysis Tur	naroud T	ime X	Standa	rd c	Other	1.	10 1	001	Vc ()	U			
Vista Analyt	ical eld Way, El Dorado Hills CA 95762 520	Please send analytic and the original chai bas@cdimengineering sab@cdimengineering		GeoTracker EDF required? □ Yes X No LOCUS EDD required? □ Yes X No Report Results to: □ RL X MDL Report soil results to: □ wet weight (total) □ dry weight									Specify analytic/prep method and detection limit in report. Notify us of any anomalous peaks in GC or other scans. Call immediately with any questions or problems.							
CDIM CON		Project Manager:	Bryan Stark	s			ANALYSIS REQUESTED										COC Number:			
CDIM Engin	eering	Phone Number	415-498-053					$\neg \top$	T	I						-1				
	et, 3rd Floor	Sampled by:																		
	co, California 94102	Sample date(s):													1110		Page of			
	NFORMATION	Sample date(s).															Page OI			
Job Name:	LRTC Industrial Stormwater					1699)											SDG number:			
Job #:	161-004					EPA 1														
Address:	402 Wright Avenue, Richmond CA 94804					les (
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	Pesticides (EPA								-			Sample Specific Notes:			
	TS2-E-191218	12/18/19	1049	w	3	Х											Composite			
		1.1.1.1.1																		
	-																			
									III											
		1/																		
				Field Filt	ered (X):												- 1			
	vation Used: 1= lce, 2= HCI; $3= H_2SO_4$;	ALTO ALTO ALTO ALTO ALTO ALTO ALTO ALTO			10/	1								4						
Special Ins	structions/QC Requirements & Co			rt with rep	oorting lin	nit an	d method	detect	ion limi	t. Anal	yze an	d repo	t only t	ne meta	als listed	above.				
Relinquished	by: Can III	Company:	1	Date/Time:	1205	Rece	ived by:	LXGA	All			0	Compan	y: Va	~		Date/Time: 12/14/14 1023			
Relinquished	by	Company:		Date/Time:		Rece	ived by:	Y				0	Compan				Date/Time:			
Relinquished	by:	Company:		Date/Time:		Rece	ived by:					C	Compan	y:			Date/Time:			
	x = Samples released to a secured, lo	cked area.					• = Sa	mples r	eceived fr	om a se	cured, Ic	cked are	a				·			
	SAMPLERS NAME	Buyan Stavi	48					M	OBILE#		80	8	-56	92	30		1			
	SAMPLERS SIGNATUR		-					DA	ATE / TIM	E	(2	-/18/	19	12	05		1			

Sample Log-In Checklist

Vista Work Orde	er#:	1901	1367				Page TAT_	# <u>l</u>	of <u>1</u>	_	
Samples Arrival:			В	Initi:			Locatio	n: WR-2 ack: N/3			
Delivered By:	d By: FedEx UPS On Trac GSO DHL Hand						A STATE OF THE STA	Otl	Other		
Preservation:									No	ne	
Temp °C: 0,6		F	robe use	d: Y	/N		Thermo	meter ID:	IR-i	L	
	the state of the s				e du de			YES	NO	NA	
Shipping Contain								/			
Shipping Custody		- Profit 1								1	
Airbill —	Trk #	7490	7457 9	252				1			
Shipping Docume	entation Pres	sent?		,		,		1			
Shipping Contain	er	1	/ista	0	lient >	Re	tain	Return	Dis	ose	
Chain of Custody	/ Sample D	ocumer	tation Pre	esent	?			1			
Chain of Custody	/ Sample D	ocumer	tation Co	mplet	e?			1			
Holding Time Acc	ceptable?							1		= 1	
Logged In:	Date/Time	1127		Initia V	als: WS			1: WR-2 1ck: 3.7.2,	C-4		
COC Anomaly/Sa	mple Accep	tance F	orm com	oleted	1?				1	1	

Comments:

ID.: LR - SLC

Rev No.: 4

Rev Date: 10/08/2019

Page: 1 of 1

CoC/Label Reconciliation Report WO# 1904367

LabNumber CoC Sample ID		SampleAlias	Sample Date/Time	Container	Sample BaseMatrix Comments
1904367-01 A TS2-E-191218	d		18-Dec-19 10:49	Amber Glass NM Bottle, 1L	Aqueous
1904367-01 B TS2-E-191218	Ø,		18-Dec-19 10:49	Amber Glass NM Bottle, 1L	Aqueous
1904367-01 C TS2-E-191218	Ø		18-Dec-19 10:49	Amber Glass NM Bottle, 1L	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

Yes	No	NA	Comments
1			
		1	
1			
1			
	1	V	
		V	
		\frac{1}{3}	

Verifed by/Date: 100 12/19/19

Printed: 12/19/2019 11:29:59AM

Work Order 1904367

February 07, 2020

Vista Work Order No. 2000097

Mr. Scott Bourne CDIM Engineering 45 Polk Street, 3rd Floor San Francisco, CA 94102

Dear Mr. Bourne,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on January 17, 2020 under your Project Name 'LRTC Industrial Stormwater'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2000097 Page 1 of 16

Vista Work Order No. 2000097 Case Narrative

Sample Condition on Receipt:

One water sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. A sample ID discrepancy was noted upon sample receipt. The sample listed as "TS-I-200116" on the sample container label has been reported as "TS2-I-200116", as it was listed on the Chain of Custody.

Analytical Notes:

EPA Method 1699

As requested, the sample was composited prior to taking an aliquot for extraction.

The sample was extracted and analyzed for chlorinated pesticides by EPA Method 1699 using a ZB-50 GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the method acceptance criteria are listed in the table below:

OC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
2000097-01	TS2-I-200116	EPA Method 1699	13C12-2,4'-DDE	Н	42.3
2000097-01	TS2-I-200116	EPA Method 1699	13C12-4,4'-DDE	Н	34.0
2000097-01	TS2-I-200116	EPA Method 1699	13C12-Dieldrin	Н	29.2
2000097-01	TS2-I-200116	EPA Method 1699	13C12-Endrin	Н	23.0
2000097-01	TS2-I-200116	EPA Method 1699	13C10-cis-Nonachlor	Н	22.9
2000097-01	TS2-I-200116	EPA Method 1699	13C9-Endosulfan Sulfate	Н	11.5
2000097-01	TS2-I-200116	EPA Method 1699	13C12-Endrin Aldehyde	Н	7.40
2000097-01	TS2-I-200116	EPA Method 1699	13C12-Endrin Ketone	Н	6.20

H = Recovery was outside laboratory acceptance criteria.

Work Order 2000097 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 2000097 Page 3 of 16

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2000097-01	TS2-I-200116	16-Jan-20 15:50	17-Jan-20 08:40	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle. 1L

Vista Project: 2000097 Client Project: LRTC Industrial Stormwater

Work Order 2000097 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2000097 Page 5 of 16

Sample ID: Met	thod Blank							EPA Met	thod 1699
Matrix: Aqueous Sample Size: 1.00 L	.	QC Batch: B0A0142 Date Extracted: 21-Jan-2020 6:14				BOA0142-BLK1 e Analyzed: 04-Feb-20 13:12 Co.	lumn: ZB-50		
Analyte Con	nc. (pg/L)	RL	MDL	Qualifiers]	Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	17.5	40.0	6.78	J	IS	13C6-Hexachlorobenzene	67.2	5 - 120	
alpha-BHC	ND	40.0	7.05		IS	13C6-alpha-BHC	81.5	32 - 130	
Lindane (gamma-BHC)	ND	40.0	4.96		IS	13C6-Lindane (gamma-BHC)	92.3	11 - 120	
beta-BHC	ND	40.0	6.99		IS	13C6-beta-BHC	87.9	32 - 130	
delta-BHC	ND	40.0	7.60		IS	13C6-delta-BHC	80.9	36 - 137	
Heptachlor	ND	40.0	14.0		IS	13C10-Heptachlor	62.9	5 - 120	
Aldrin	ND	40.0	8.72		IS	13C12-Aldrin	70.3	5 - 120	
Oxychlordane	ND	40.0	15.4		IS	13C10-Oxychlordane	91.6	23 - 135	
cis-Heptachlor Epoxide	ND	40.0	9.60		IS	13C10-cis-Heptachlor Epoxide	89.2	27 - 137	
trans-Heptachlor Epoxide	ND	40.0	32.3		IS	13C10-trans-Chlordane (gamma)	112	21 - 132	
trans-Chlordane (gamma)	ND	40.0	16.0		IS	13C10-trans-Nonachlor	104	14 - 136	
trans-Nonachlor	ND	40.0	15.0		IS	13C9-Endosulfan I (alpha)	87.2	15 - 148	
cis-Chlordane (alpha)	ND	40.0	22.7		IS	13C12-2,4'-DDE	88.4	47 - 160	
Endosulfan I (alpha)	ND	200	77.9		IS	13C12-4,4'-DDE	86.0	47 - 160	
2,4'-DDE	ND	40.0	25.2		IS	13C12-Dieldrin	71.7	40 - 151	
4,4'-DDE	ND	40.0	8.61		IS	13C12-Endrin	81.2	35 - 155	
Dieldrin	ND	40.0	10.5		IS	13C10-cis-Nonachlor	91.4	36 - 139	
Endrin	ND	40.0	19.6		IS	13C9-Endosulfan II (beta)	77.9	5 - 122	
cis-Nonachlor	ND	40.0	9.28		IS	13C12-2,4'-DDD	62.1	5 - 199	
Endosulfan II (beta)	ND	200	70.7		IS	13C12-2,4'-DDT	53.3	5 - 199	
2,4'-DDD	ND	40.0	9.64		IS	13C12-4,4'-DDD	62.5	5 - 120	
2,4'-DDT	ND	40.0	17.2		IS	13C12-4,4'-DDT	58.8	5 - 120	
4,4'-DDD	ND	40.0	13.8		IS	13C9-Endosulfan Sulfate	85.1	15 - 148	
4,4'-DDT	ND	40.0	17.2		IS	13C12-Methoxychlor	59.4	5 - 120	
Endosulfan Sulfate	ND	200	70.9		IS	13C10-Mirex	94.2	5 - 120	
4,4'-Methoxychlor	ND	40.0	67.9		IS	13C12-Endrin Aldehyde	35.0	15 - 148	
Mirex	ND	40.0	6.64		IS	13C12-Endrin Ketone	59.1	15 - 148	
Endrin Aldehyde	ND	200	70.9						
Endrin Ketone	ND	200	47.6						

MDL - Method detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Work Order 2000097 Page 6 of 16

Sample ID: OPR EPA Method 1699

Matrix: Aqueous QC Batch: B0A0142 Lab Sample: B0A0142-BS1

Sample Size: 1.00 L Date Extracted: 21-Jan-2020 6:14 Date Analyzed: 04-Feb-20 11:32 Column: ZB-50

Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
Hexachlorobenzene	1060	1000	106	50 - 120	IS	13C6-Hexachlorobenzene	64.1	5 - 120
alpha-BHC	1040	1000	104	50 - 120	IS	13C6-alpha-BHC	82.7	17 - 141
Lindane (gamma-BHC)	945	1000	94.5	50 - 120	IS	13C6-Lindane (gamma-BHC)	93.7	5 - 124
beta-BHC	1030	1000	103	50 - 120	IS	13C6-beta-BHC	93.2	17 - 141
delta-BHC	1040	1000	104	50 - 120	IS	13C6-delta-BHC	89.1	16 - 150
Heptachlor	1020	1000	102	50 - 120	IS	13C10-Heptachlor	71.2	5 - 128
Aldrin	1040	1000	104	50 - 120	IS	13C12-Aldrin	81.2	5 - 126
Oxychlordane	1010	1000	101	50 - 120	IS	13C10-Oxychlordane	107	5 - 144
cis-Heptachlor Epoxide	985	1000	98.5	50 - 120	IS	13C10-cis-Heptachlor Epoxide	111	8 - 146
trans-Heptachlor Epoxide	1010	1000	101	50 - 120	IS	13C10-trans-Chlordane (gamma)	127	15 - 144
trans-Chlordane (gamma)	993	1000	99.3	50 - 120	IS	13C10-trans-Nonachlor	117	13 - 149
trans-Nonachlor	1040	1000	104	50 - 120	IS	13C9-Endosulfan I (alpha)	103	5 - 144
cis-Chlordane (alpha)	962	1000	96.2	50 - 120	IS	13C12-2,4'-DDE	99.7	26 - 169
Endosulfan I (alpha)	1000	1000	100	50 - 120	IS	13C12-4,4'-DDE	109	26 - 169
2,4'-DDE	1010	1000	101	24 - 123	IS	13C12-Dieldrin	84.9	19 - 161
4,4'-DDE	993	1000	99.3	50 - 120	IS	13C12-Endrin	94.2	20 - 157
Dieldrin	1050	1000	105	50 - 120	IS	13C10-cis-Nonachlor	113	17 - 154
Endrin	1100	1000	110	50 - 120	IS	13C9-Endosulfan II (beta)	91.1	5 - 120
cis-Nonachlor	1010	1000	101	50 - 120	IS	13C12-2,4'-DDD	83.5	14 - 200
Endosulfan II (beta)	1000	1000	100	5 - 200	IS	13C12-2,4'-DDT	69.9	14 - 200
2,4'-DDD	1050	1000	105	50 - 120	IS	13C12-4,4'-DDD	81.0	14 - 200
2,4'-DDT	1140	1000	114	50 - 120	IS	13C12-4,4'-DDT	73.0	13 - 200
4,4'-DDD	1050	1000	105	42 - 120	IS	13C9-Endosulfan Sulfate	82.7	5 - 144
4,4'-DDT	1050	1000	105	50 - 120	IS	13C12-Methoxychlor	61.4	8 - 200
Endosulfan Sulfate	971	1000	97.1	50 - 120	IS	13C10-Mirex	97.6	5 - 138
4,4'-Methoxychlor	1020	1000	102	50 - 120	IS	13C12-Endrin Aldehyde	35.8	5 - 144
Mirex	1040	1000	104	50 - 120	IS	13C12-Endrin Ketone	53.9	5 - 144
Endrin Aldehyde	1000	1000	100	50 - 134				
Endrin Ketone	971	1000	97.1	50 - 134				

LCL-UCL - Lower control limit - upper control limit

Work Order 2000097 Page 7 of 16

Client Data			Sample Data				ratory				
	M Engineering		Matrix:	Water			Samp		Date Received:	17-Jan-2020	
3	C Industrial Stormwat	ter	Sample Size:	1.03 L		-	Batch:		Date Extracted:	21-Jan-2020	6:14
Date Collected: 16-Ja	n-2020 15:50					Date	e Anal	yzed: 04-Feb-20 18:08 Column	n: ZB-50		
Analyte Conc	c. (pg/L)	RL		MDL	Qualifi	ers		Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	1990	38.7		6.56	В		IS	13C6-Hexachlorobenzene	81.7	5 - 120	
alpha-BHC	103	38.7		6.82			IS	13C6-alpha-BHC	61.4	32 - 130	
Lindane (gamma-BHC)	65.2	38.7		4.80			IS	13C6-Lindane (gamma-BHC)	73.0	11 - 120	
beta-BHC	74.1	38.7		6.76			IS	13C6-beta-BHC	44.9	32 - 130	
delta-BHC	ND	38.7		7.35			IS	13C6-delta-BHC	48.1	36 - 137	
Heptachlor	ND	38.7		13.5			IS	13C10-Heptachlor	19.9	5 - 120	
Aldrin	40.7	38.7		8.43			IS	13C12-Aldrin	22.8	5 - 120	
Oxychlordane	ND	38.7		14.9			IS	13C10-Oxychlordane	50.9	23 - 135	
cis-Heptachlor Epoxide	138	38.7		9.28			IS	13C10-cis-Heptachlor Epoxide	33.0	27 - 137	
trans-Heptachlor Epoxide	ND	38.7		31.2			IS	13C10-trans-Chlordane (gamma	30.6	21 - 132	
trans-Chlordane (gamma)	1390	38.7		15.5			IS	13C10-trans-Nonachlor	39.4	14 - 136	
trans-Nonachlor	762	38.7		14.5			IS	13C9-Endosulfan I (alpha)	32.7	15 - 148	
cis-Chlordane (alpha)	1380	38.7		21.9			IS	13C12-2,4'-DDE	42.3	47 - 160	Н
Endosulfan I (alpha)	ND	193		75.3			IS	13C12-4,4'-DDE	34.0	47 - 160	Н
2,4'-DDE	869	38.7		24.4			IS	13C12-Dieldrin	29.2	40 - 151	Н
4,4'-DDE	10900	38.7		8.33			IS	13C12-Endrin	23.0	35 - 155	Н
Dieldrin	2930	38.7		10.2			IS	13C10-cis-Nonachlor	22.9	36 - 139	Н
Endrin	1370	38.7		19.0			IS	13C9-Endosulfan II (beta)	21.3	5 - 122	
cis-Nonachlor	195	38.7		8.97			IS	13C12-2,4'-DDD	30.6	5 - 199	
Endosulfan II (beta)	ND	193		68.4			IS	13C12-2,4'-DDT	20.9	5 - 199	
2,4'-DDD	5160	38.7		9.32			IS	13C12-4,4'-DDD	20.9	5 - 120	
2,4'-DDT	7520	38.7		16.6			IS	13C12-4,4'-DDT	12.5	5 - 120	
4,4'-DDD	7810	38.7		13.3			IS	13C9-Endosulfan Sulfate	11.5	15 - 148	Н
4,4'-DDT	18400	38.7		16.6			IS	13C12-Methoxychlor	5.60	5 - 120	
Endosulfan Sulfate	ND	193		68.6			IS	13C10-Mirex	17.8	5 - 120	
4,4'-Methoxychlor	ND	38.7		65.7			IS	13C12-Endrin Aldehyde	7.40	15 - 148	Н
Mirex	ND	38.7		6.42			IS	13C12-Endrin Ketone	6.20	15 - 148	Н
Endrin Aldehyde	ND	193		68.6							
Endrin Ketone	ND	193		46.0							

EPA Method 1699

RL - Reporting limit

Sample ID: TS2-I-200116

Work Order 2000097 Page 8 of 16

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2000097 Page 9 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2000097 Page 10 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699			
HRGC/HRMS				
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B			
GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Drinking Water				
Description of Test	Method			
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA			
	1613/1613B			
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101			
	2009			

Work Order 2000097 Page 11 of 16

MATRIX: Non-Potable Water				
Description of Test	Method			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B			
Dilution GC/HRMS				
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C			
by GC/HRMS				
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Dioxin by GC/HRMS	EPA 613			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B			
Dibenzofurans by GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

MATRIX: Solids				
Description of Test	Method			
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613			
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B			
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A			
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C			
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699			
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537			
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B			
Dibenzofurans by GC/HRMS				
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA			
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A			

Work Order 2000097 Page 12 of 16

1400

1/16/20

DATE / TIME

-														_				2	000	0(97	0.30
C					CH	AIN	OF	CL	JST	OD	Y R	REC	ORI	D								
LABORATO	DRY:	INSTRUCTIONS FO	R LAB PER	SONNEL:			∕∖naly	sis Tu	marou	d Time	Х	Standa	ard	<u> 0</u> 0	ther							
Vista Analyt 1104 Windf (916) 673-1 Karen Volpe	eld Way, El Dorado Hills CA 95762 520	Please send analytic and the original chair bas@cdimengineering sab@cdimengineering	n-of-custody com, mec@c	form to:			I.OCU Repo		D requ ults to:		□ Ye RL				□ dry w	eight/		Notify	us of	any ar	nomalo	thod and detection limit in report rus peaks in GC or other scans. y questions or problems.
CDIM CON	TACT:	Project Manager:	Bryan Starks	s							-	ANAL'	YSIS		JESTE	_						COC Number:
CDIM Engir	eering	Phone Number	415-498-053	35			ГП	\neg			\neg										T	1
	eet, 3rd Floor co, California 94102	Sampled by: Sample date(s):																				Page of
PROJECTI	NFORMATION					1																, age
	LRTC Industrial Stormwater					(669																SDG number:
Job#:						Pesticides (EPA 1699)																
Address:	402 Wright Avenue, Richmond CA 94804					ides																
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	Pestic																Sample Specific Notes:
	TS2-1-2001/6	1/16/20	1026	w	3	X																Composite
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \																			
											_											
		•		Field Filte	red (X):				\neg													
	vation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ; 4=	-	,			1		\neg	\neg		\neg		\neg									
Special Ins	structions/QC Requirements & Com	ments: Level II Re	port. Repo	rt with repo	orting lim	it an	d me	thod	dete	ction	limit	. Ana	lyze a	ind r	eport	only	the r	netal	s list	ed at	ove.	

Relinquished by Company: Date/Time: Received by: Company: 1/16/20 16/08 CHILL Gana 0 Company: 0 Relinquished by: Date/Time: Received by: Company: Company: Date/Time: 0 x = Samples released to a secured, locked area. • = Samples received from a secured, locked area 256-9230 SAMPLERS NAME MOBILE #

Work Order 2000097 Page 13 of 16

SAMPLERS SIGNATURE

Sample Log-In Checklist

Page # ____ of ___

Vista Work Orde	r#: <u>20</u>	0009	7									
Samples	Date/Tim	ie		ln	itials:		L	ocation: WR-2				
Arrival:	01/17/2020 08:40			Hou				Shelf/Rack: NA				
Delivered By:	FedEx	UPS	On Tra	O	GSO	DHI	L	Hand Delivered	Other			
Preservation:	dce		Blu	Blue Ice				Dry Ice	None			
Temp °C: 0.3	(uncorr	Probe used: Y / N					Thermometer ID: IR-f					
Temp °C: /> -	(correc		TODE USC	Ju.	O		''		March 100 months			

				THE PERSON	Tone	YES	NO	NA
Shipping Contain	er(s) Intact?					1		
Shipping Custody	y Seals Intac	t?						1
Airbill	Trk #	7797 2727	8090			1		
Shipping Docume	entation Pres	ent?						
Shipping Contain	er	Vista	Client	Retain	Re	eturn	Disp	ose
Chain of Custody	/ Sample Do	ocumentation Pro	esent?			1		
Chain of Custody	/ Sample Do	ocumentation Co	mplete?					
Holding Time Acc	ceptable?							
	Date/Time	_	Initials:	Locati	ion:	WR-2	2	
Logged In:	01/17/20	0920	45	Shelf/	Rack	κ: <u>β-</u> (<u>) </u>	_
COC Anomaly/Sa	ample Accep	tance Form com	pleted?	<u>'</u>				

Comments:

ID.: LR - SLC Rev No.: 4 Rev Date: 10/08/2019 Page: 1 of 1

CoC/Label Reconciliation Report WO# 2000097

LabNumber CoC Sample ID			Sample/	Alias	Sample Date/Time		Container	Sample BaseMatrix Comments
2000097-01 A TS2-I-200116	* 🗆				16-Jan-20 15:50	\(\sqrt{1}\)	Amber Glass NM Bottle, IL	Aqueous
2000097-01 B TS2-I-200116	* 🗆				16-Jan-20 15:50	⊡	Amber Glass NM Bottle, 1L	Aqueous
2000097-01 C TS2-I-200116	*□				16-Jan-20 15:50	Q	Amber Glass NM Bottle, 1L	Aqueous
Any discrepancies are noted in the Sample Container Intact?	following columns.	Yes	No N	A Commen	match.	MPIE 2 Reconci	iled by date and time	ID do not
Sample Custody Seals Intact?			,	/	TSI	2-I-200	186e! 15-I-200116	
Adequate Sample Volume?		✓					1	
Container Type Appropriate for A	analysis(es)	√						

2000097

Verifed by/Date: SH 0/14/20

Preservation Documented: Na2S2O3 Trizma None Other

If Chlorinated or Drinking Water Samples, Acceptable Preservation?

Printed: 1/17/2020 9:42:43AM

Rev. Date: 11/08/2019

ANOMALY FORM ID: SR-AF

Rev. No: 0

ANOMALY FORM

Vista V	Vork	Order <u>2000097</u>
Initial/Date	The fo	ollowing checked issues were noted during sample receipt and login:
		1. The samples were received out of temperature at (WI-PHT): Was Ice present: Yes No Melted Blue Ice
		2. The Chain-of-Custody (CoC) was not relinquished properly.
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
		4. The sample(s) did not include a sample collection time. All or Sample Name:
£5 01/17/120	Δ	 A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
		 A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
		7. The CoC did not include a sample matrix. The following sample matrix will be used:
		8. Insufficent volume received for analysis. All or Sample Name:
		9. The backup bottle was received broken. Sample Name:
		10. CoC not received, illegible or destroyed.
		11. The sample(s) were received out of holding time. All or Sample Name:
		12. The CoC did not include an analysis. All or Sample Name:
		13. Sample(s) received without collection date. All or Sample Name:
		14. Sample(s) not received. All or Sample Name:
		15. Sample(s) received broken. All or Sample Name:
		16. An incorrect container-type was used. All or Sample Name:
		17. Other:
Bolded items r	equire s	ign-off
Client Contacto	ed:	
Date of Contac	ct: _	
Vista Client Ma	anager:	
Resolution:		

ID: SR - AF Rev.: 0 Rev. Date: 11/08/2019 Page: 1 of 1

Work Order 2000097 Page 16 of 16

February 07, 2020

Vista Work Order No. 2000096

Mr. Scott Bourne CDIM Engineering 45 Polk Street, 3rd Floor San Francisco, CA 94102

Dear Mr. Bourne,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on January 17, 2020 under your Project Name 'LRTC Industrial Stormwater'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Work Order 2000096 Page 1 of 16

Vista Work Order No. 2000096 Case Narrative

Sample Condition on Receipt:

One water sample was received in good condition and within the method temperature requirements. The sample was received and stored securely in accordance with Vista standard operating procedures and EPA methodology. A sample ID discrepancy was noted upon sample receipt. The sample listed as "TS-E-200116" on the sample container label has been reported as "TS2-E-200116", as it was listed on the Chain of Custody.

Analytical Notes:

EPA Method 1699

As requested, the sample was composited prior to taking an aliquot for extraction.

The sample was extracted and analyzed for chlorinated pesticides by EPA Method 1699 using a ZB-50 GC column.

Holding Times

The sample was extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected above the sample quantitation limits in the Method Blank. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the method acceptance criteria are listed in the table below:

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
2000096-01	TS2-E-200116	EPA Method 1699	13C12-Endrin Aldehyde	Н	14.4

H = Recovery was outside laboratory acceptance criteria.

Work Order 2000096 Page 2 of 16

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	3
Sample Inventory	4
Analytical Results	5
Qualifiers	9
Certifications	10
Sample Receipt	13

Work Order 2000096 Page 3 of 16

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2000096-01	TS2-E-200116	16-Jan-20 10:20	17-Jan-20 08:40	Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle, 1L
				Amber Glass NM Bottle 1I

Vista Project: 2000096 Client Project: LRTC Industrial Stormwater

Work Order 2000096 Page 4 of 16

ANALYTICAL RESULTS

Work Order 2000096 Page 5 of 16

Sample ID: Met	thod Blank							EPA Met	thod 1699
Matrix: Aqueous Sample Size: 1.00 L	.	QC Batch: B0A0142 Date Extracted: 21-Jan-2020 6:14				BOA0142-BLK1 e Analyzed: 04-Feb-20 13:12 Co.	lumn: ZB-50		
Analyte Con	nc. (pg/L)	RL	MDL	Qualifiers]	Labeled Standard	%R	LCL-UCL	Qualifiers
Hexachlorobenzene	17.5	40.0	6.78	J	IS	13C6-Hexachlorobenzene	67.2	5 - 120	
alpha-BHC	ND	40.0	7.05		IS	13C6-alpha-BHC	81.5	32 - 130	
Lindane (gamma-BHC)	ND	40.0	4.96		IS	13C6-Lindane (gamma-BHC)	92.3	11 - 120	
beta-BHC	ND	40.0	6.99		IS	13C6-beta-BHC	87.9	32 - 130	
delta-BHC	ND	40.0	7.60		IS	13C6-delta-BHC	80.9	36 - 137	
Heptachlor	ND	40.0	14.0		IS	13C10-Heptachlor	62.9	5 - 120	
Aldrin	ND	40.0	8.72		IS	13C12-Aldrin	70.3	5 - 120	
Oxychlordane	ND	40.0	15.4		IS	13C10-Oxychlordane	91.6	23 - 135	
cis-Heptachlor Epoxide	ND	40.0	9.60		IS	13C10-cis-Heptachlor Epoxide	89.2	27 - 137	
trans-Heptachlor Epoxide	ND	40.0	32.3		IS	13C10-trans-Chlordane (gamma)	112	21 - 132	
trans-Chlordane (gamma)	ND	40.0	16.0		IS	13C10-trans-Nonachlor	104	14 - 136	
trans-Nonachlor	ND	40.0	15.0		IS	13C9-Endosulfan I (alpha)	87.2	15 - 148	
cis-Chlordane (alpha)	ND	40.0	22.7		IS	13C12-2,4'-DDE	88.4	47 - 160	
Endosulfan I (alpha)	ND	200	77.9		IS	13C12-4,4'-DDE	86.0	47 - 160	
2,4'-DDE	ND	40.0	25.2		IS	13C12-Dieldrin	71.7	40 - 151	
4,4'-DDE	ND	40.0	8.61		IS	13C12-Endrin	81.2	35 - 155	
Dieldrin	ND	40.0	10.5		IS	13C10-cis-Nonachlor	91.4	36 - 139	
Endrin	ND	40.0	19.6		IS	13C9-Endosulfan II (beta)	77.9	5 - 122	
cis-Nonachlor	ND	40.0	9.28		IS	13C12-2,4'-DDD	62.1	5 - 199	
Endosulfan II (beta)	ND	200	70.7		IS	13C12-2,4'-DDT	53.3	5 - 199	
2,4'-DDD	ND	40.0	9.64		IS	13C12-4,4'-DDD	62.5	5 - 120	
2,4'-DDT	ND	40.0	17.2		IS	13C12-4,4'-DDT	58.8	5 - 120	
4,4'-DDD	ND	40.0	13.8		IS	13C9-Endosulfan Sulfate	85.1	15 - 148	
4,4'-DDT	ND	40.0	17.2		IS	13C12-Methoxychlor	59.4	5 - 120	
Endosulfan Sulfate	ND	200	70.9		IS	13C10-Mirex	94.2	5 - 120	
4,4'-Methoxychlor	ND	40.0	67.9		IS	13C12-Endrin Aldehyde	35.0	15 - 148	
Mirex	ND	40.0	6.64		IS	13C12-Endrin Ketone	59.1	15 - 148	
Endrin Aldehyde	ND	200	70.9						
Endrin Ketone	ND	200	47.6						

MDL - Method detection limit

RL - Reporting limit

LCL-UCL - Lower control limit - upper control limit

Work Order 2000096 Page 6 of 16

Sample ID: OPR EPA Method 1699

Matrix: Aqueous QC Batch: B0A0142 Lab Sample: B0A0142-BS1

Sample Size: 1.00 L Date Extracted: 21-Jan-2020 6:14 Date Analyzed: 04-Feb-20 11:32 Column: ZB-50

Analyte	Amt Found (pg/L)	Spike Amt	%R	Limits		Labeled Standard	%R	LCL-UCL
Hexachlorobenzene	1060	1000	106	50 - 120	IS	13C6-Hexachlorobenzene	64.1	5 - 120
alpha-BHC	1040	1000	104	50 - 120	IS	13C6-alpha-BHC	82.7	17 - 141
Lindane (gamma-BHC)	945	1000	94.5	50 - 120	IS	13C6-Lindane (gamma-BHC)	93.7	5 - 124
beta-BHC	1030	1000	103	50 - 120	IS	13C6-beta-BHC	93.2	17 - 141
delta-BHC	1040	1000	104	50 - 120	IS	13C6-delta-BHC	89.1	16 - 150
Heptachlor	1020	1000	102	50 - 120	IS	13C10-Heptachlor	71.2	5 - 128
Aldrin	1040	1000	104	50 - 120	IS	13C12-Aldrin	81.2	5 - 126
Oxychlordane	1010	1000	101	50 - 120	IS	13C10-Oxychlordane	107	5 - 144
cis-Heptachlor Epoxide	985	1000	98.5	50 - 120	IS	13C10-cis-Heptachlor Epoxide	111	8 - 146
trans-Heptachlor Epoxide	1010	1000	101	50 - 120	IS	13C10-trans-Chlordane (gamma)	127	15 - 144
trans-Chlordane (gamma)	993	1000	99.3	50 - 120	IS	13C10-trans-Nonachlor	117	13 - 149
trans-Nonachlor	1040	1000	104	50 - 120	IS	13C9-Endosulfan I (alpha)	103	5 - 144
cis-Chlordane (alpha)	962	1000	96.2	50 - 120	IS	13C12-2,4'-DDE	99.7	26 - 169
Endosulfan I (alpha)	1000	1000	100	50 - 120	IS	13C12-4,4'-DDE	109	26 - 169
2,4'-DDE	1010	1000	101	24 - 123	IS	13C12-Dieldrin	84.9	19 - 161
4,4'-DDE	993	1000	99.3	50 - 120	IS	13C12-Endrin	94.2	20 - 157
Dieldrin	1050	1000	105	50 - 120	IS	13C10-cis-Nonachlor	113	17 - 154
Endrin	1100	1000	110	50 - 120	IS	13C9-Endosulfan II (beta)	91.1	5 - 120
cis-Nonachlor	1010	1000	101	50 - 120	IS	13C12-2,4'-DDD	83.5	14 - 200
Endosulfan II (beta)	1000	1000	100	5 - 200	IS	13C12-2,4'-DDT	69.9	14 - 200
2,4'-DDD	1050	1000	105	50 - 120	IS	13C12-4,4'-DDD	81.0	14 - 200
2,4'-DDT	1140	1000	114	50 - 120	IS	13C12-4,4'-DDT	73.0	13 - 200
4,4'-DDD	1050	1000	105	42 - 120	IS	13C9-Endosulfan Sulfate	82.7	5 - 144
4,4'-DDT	1050	1000	105	50 - 120	IS	13C12-Methoxychlor	61.4	8 - 200
Endosulfan Sulfate	971	1000	97.1	50 - 120	IS	13C10-Mirex	97.6	5 - 138
4,4'-Methoxychlor	1020	1000	102	50 - 120	IS	13C12-Endrin Aldehyde	35.8	5 - 144
Mirex	1040	1000	104	50 - 120	IS	13C12-Endrin Ketone	53.9	5 - 144
Endrin Aldehyde	1000	1000	100	50 - 134				
Endrin Ketone	971	1000	97.1	50 - 134				

LCL-UCL - Lower control limit - upper control limit

Work Order 2000096 Page 7 of 16

Sample ID: TS2 Client Data			Cl- D. t		-	T - L .	4	D-4-			thod 169
	M Engineering		Sample Data Matrix:	Water			r atory Sample		Date Received:	17-Jan-2020	0 8:40
	C Industrial Stormw	oter	Sample Size:	1.02 L			Sample Batch:	B0A0142	Date Extracted:		
3	an-2020 10:20	atei	Sample Size.	1.02 L		-	: Analy			21 - Jan-2020	0 0.14
Date Confected. 10-3	ali-2020 10.20					Date	Anary	zed. 04-1-60-20 17.18 Column	. ZD-30		
Analyte Con	c. (pg/L)	RL	'	MDL	Qualifi	iers		Labeled Standard	%R	LCL-UCL	Qualifier
Hexachlorobenzene	434	39.2		6.65	В			13C6-Hexachlorobenzene	66.3	5 - 120	
alpha-BHC	57.0	39.2		6.91			IS	13C6-alpha-BHC	78.0	32 - 130	
Lindane (gamma-BHC)	48.7	39.2		4.86			IS	13C6-Lindane (gamma-BHC)	81.1	11 - 120	
beta-BHC	64.6	39.2		6.85			IS	13C6-beta-BHC	78.0	32 - 130	
delta-BHC	ND	39.2		7.45			IS	13C6-delta-BHC	73.0	36 - 137	
Heptachlor	ND	39.2		13.7			IS	13C10-Heptachlor	11.5	5 - 120	
Aldrin	ND	39.2		8.55			IS	13C12-Aldrin	57.7	5 - 120	
Oxychlordane	ND	39.2		15.1			IS	13C10-Oxychlordane	68.6	23 - 135	
cis-Heptachlor Epoxide	73.4	39.2		9.41			IS	13C10-cis-Heptachlor Epoxide	57.1	27 - 137	
trans-Heptachlor Epoxide	ND	39.2		31.7			IS	13C10-trans-Chlordane (gamma)	59.9	21 - 132	
trans-Chlordane (gamma)	191	39.2		15.7			IS	13C10-trans-Nonachlor	69.8	14 - 136	
trans-Nonachlor	105	39.2		14.7			IS	13C9-Endosulfan I (alpha)	51.4	15 - 148	
cis-Chlordane (alpha)	226	39.2		22.3			IS	13C12-2,4'-DDE	69.1	47 - 160	
Endosulfan I (alpha)	ND	196		76.4			IS	13C12-4,4'-DDE	70.9	47 - 160	
2,4'-DDE	114	39.2		24.7			IS	13C12-Dieldrin	51.5	40 - 151	
4,4'-DDE	1320	39.2		8.44			IS	13C12-Endrin	46.8	35 - 155	
Dieldrin	835	39.2		10.3			IS	13C10-cis-Nonachlor	62.4	36 - 139	
Endrin	279	39.2		19.2			IS	13C9-Endosulfan II (beta)	45.6	5 - 122	
cis-Nonachlor	ND	39.2		9.10			IS	13C12-2,4'-DDD	65.7	5 - 199	
Endosulfan II (beta)	ND	196		69.3			IS	13C12-2,4'-DDT	54.2	5 - 199	
2,4'-DDD	715	39.2		9.45				13C12-4,4'-DDD	57.7	5 - 120	
2,4'-DDT	990	39.2		16.9				13C12-4,4'-DDT	50.0	5 - 120	
4,4'-DDD	1130	39.2		13.5			IS	13C9-Endosulfan Sulfate	41.4	15 - 148	
4,4'-DDT	2140	39.2		16.9			IS	13C12-Methoxychlor	25.0	5 - 120	
Endosulfan Sulfate	ND	196		69.5				13C10-Mirex	48.1	5 - 120	
4,4'-Methoxychlor	ND	39.2		66.6			IS	13C12-Endrin Aldehyde	14.4	15 - 148	Н
Mirex	ND	39.2		6.51				13C12-Endrin Ketone	28.3	15 - 148	
Endrin Aldehyde	ND	196		69.5							
Endrin Ketone	ND	196		46.7							

RL - Reporting limit

Page 8 of 16 Work Order 2000096

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

CRS Cleanup Recovery Standard

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of the

instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

IS Internal Standard

J The amount detected is below the Reporting Limit/LOQ

LOD Limit of Detection

LOQ Limit of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

OPR Ongoing Precision and Recovery sample

P The reported concentration may include contribution from chlorinated diphenyl

ether(s).

Q The ion transition ratio is outside of the acceptance criteria.

RL Reporting Limit

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 2000096 Page 9 of 16

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	19-013-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	207718-В
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	4042-010
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

Work Order 2000096 Page 10 of 16

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA 23
Dibenzofurans	
Determination of Polychlorinated p-Dioxins & Polychlorinated	EPA TO-9A
Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B
Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA
	1613/1613B
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	ISO 25101 2009

Work Order 2000096 Page 11 of 16

MATRIX: Non-Potable Water						
Description of Test	Method					
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B					
Dilution GC/HRMS						
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A					
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C					
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699					
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537					
Dioxin by GC/HRMS	EPA 613					
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B					
Dibenzofurans by GC/HRMS						
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA					
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A					

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

Work Order 2000096 Page 12 of 16

0		
6	-	M

CHAIN OF CUSTODY RECORD

							A-a-b	onin Tu		and Times		Class			\#ha=								
(916) 673-15	ical eld Way, El Dorado Hills CA 95762 520	INSTRUCTIONS FOR LAB PERSONNEL: Please send analytic results, electronic deliverables and the original chain-of-custody form to: bas@cdimengineering.com, mec@cdimengineering.com				LOCUS EDD required? □ Yes X No Notify us of any anomal Report Results to: □ RL X MDL Call immediately with								nomalo	method and detection limit in report, nalous peaks in GC or other scans, n any questions or problems.								
Karen Volpe		sab@cdimengineering			_	1	Repo	ort soil	result	s to:				_	□ dry		t						
CDIM CONT		Project Manager:	Bryan Stark									ANAL	YSIS	REQ	JEST	ED						COC Number:	
CDIM Engin	eering	Phone Number	415-498-053	35																			
45 Polk Stre	et, 3rd Floor	Sampled by:																					
San Francis	co, California 94102	Sample date(s):																				Page of _	
PROJECT I	NFORMATION																						
Job Name:	LRTC Industrial Stormwater					1699)																SDG number:	
Job #:						Pesticides (EPA 1699)																	
Address:	402 Wright Avenue, Richmond CA 94804		Sample	Sample	# of	icides																	
Lab ID	Sample Identification	Sample Date	Time	Matrix	Cont.	+															$ldsymbol{f eta}$	Sample Specific N	otes:
	TS2-E- 200116	1/16/20	1026	W	3	X															<u> </u>	Composite	
										ļ											<u> </u>		
																	_			ļ	_		
														_		<u> </u>				<u> </u>	<u> </u>		
																					igspace		
																					<u> </u>		
																					<u> </u>		
																	ļ			ļ	ļ		
																				ļ			
				Field Filt	ered (X):																<u> </u>		
	vation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ; 4=					1																	_
	structions/QC Requirements & Com		port. Repo						dete	ection	n limi	t. Ana	alyze	and	epor			meta	IS IIST	ed al	ove.		
Relinquished	by:	Company:	(Date/Time:	1600	Recei	ived b	1 1	Lide	n (Tana	2.4			0	Com	oany:	AL				Date/Time:	3:40
Relinquished		Company:		Date/Time:		Recei	ived b		1						0	Com	pany:					Date/Time:	
Relinquished		Company:		Date/Time:		Recei	ived b	y:								Com	pany:	_			-	Date/Time:	
	x = Samples released to a secured, loc	ີ ked area.						• = S	Sample	es rece	eived fr	om a s	ecure	d, lock	o ed area	<u> </u>						<u> </u>	
	SAMPLERS NAME	- 1	she							Τ	ILE#			08			97	30					
	SAMPLERS SIGNATURE									DATE	E / TIMI	E	1 .	16/			140					-	
	·		2																				

Sample Log-In Checklist

							P	Page # of				
Vista Work Order #: 200096TATStd												
Samples	Date/Tim	ne		In	itials:		Loc	ation: (√R-Z			
Arrival:	01/17/2	1020 (98: 4 <i>0</i>		400		She	lf/Rack	:: <u>N</u> A			
Delivered By:	FedEx	UPS	On Tra	ас	GSO	DHI	-	Han Delive	- 1	Oth	ner	
Preservation:	để	è	Bl	ue	Ice		Dr	y Ice		No	ne	
Temp °C: 0.3	(uncori	rected)			~ .					T A .	Ł	
Temp °C: O.3	(correc	ted)	Probe us	ed:	YIN		The	rmome	ter ID:	TK-	_	
										_	_	
語和自然學術物		Nation of			政制量	UL PTO		为人类	YES	NO	NA	
Shipping Contain	er(s) Intac	t?							/			
Shipping Custody	y Seals Int	act?									1	
Airbill —	Trk	# 7 <i>79</i>	7 2727	,	8090				$\sqrt{}$			
Shipping Docume	entation Pr	esent?										
Shipping Contain	er		Vista		Client	R	etain	Re	éturn	Dis	oose	
Chain of Custody / Sample Documentation Present?									1			
Chain of Custody / Sample Documentation Complete?									/			
Holding Time Acceptable?												
	Date/Tim			In	itials:		Loc	ation:	WP.	-2		
Logged In:	01/17	1200	1920		\$\l			16(D I	R.	- N		

Comments:

ID.: LR - SLC

Rev No.: 4

COC Anomaly/Sample Acceptance Form completed?

Rev Date: 10/08/2019

Page: 1 of 1

CoC/Label Reconciliation Report WO# 2000096

LabNumber CoC Sample ID		SampleAlias	Sample Date/Time	Container	Sample BaseMatrix Comments
2000096-01 A TS2-E-200116	* 🗆		16-Jan-20 10:20	Amber Glass NM Bottle, IL	Aqueous
2000096-01 B TS2-E-200116	* 🗆		16-Jan-20 10:20	Amber Glass NM Bottle, 1L	Aqueous
2000096-01 C TS2-E-200116	* 🗆		16-Jan-20 10:20	Amber Glass NM Bottle, IL	Aqueous

Comments: # COC sample ID and label sample ID do not Match Reconciled by date and time.

Ex: OC label

TS2-E-20016 TS2 shol/17/20 TS-E-200116

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

	Yes	No	NA
Sample Container Intact?	1		
Sample Custody Seals Intact?			/
Adequate Sample Volume?	1		
Container Type Appropriate for Analysis(es)	1		
Preservation Documented: Na2S2O3 Trizma None Other			1
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			1

Verifed by/Date: 5H 01/17/20

Printed: 1/17/2020 9:42:52AM

Rev. Date: 11/08/2019 Rev. No: 0

ANOMALY FORM ID: SR-AF

ANOMALY FORM

Vista V	Vork	Order <u>2000</u> 096
Initial/Date	The fo	ollowing checked issues were noted during sample receipt and login:
		The samples were received out of temperature at (WI-PHT): Was Ice present: Yes No Melted Blue Ice
		2. The Chain-of-Custody (CoC) was not relinquished properly.
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
		4. The sample(s) did not include a sample collection time. All or Sample Name:
61/11/10	\Box	5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
		 A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
		7. The CoC did not include a sample matrix. The following sample matrix will be used:
		8. Insufficent volume received for analysis. All or Sample Name:
		9. The backup bottle was received broken. Sample Name:
		10. CoC not received, illegible or destroyed.
		11. The sample(s) were received out of holding time. All or Sample Name:
		12. The CoC did not include an analysis. All or Sample Name:
		13. Sample(s) received without collection date. All or Sample Name:
		14. Sample(s) not received. All or Sample Name:
		15. Sample(s) received broken. All or Sample Name:
		16. An incorrect container-type was used. All or Sample Name:
		17. Other:
Bolded items i	require s	ign-off
Client Contact	ed: _	
Date of Conta	ct: _	
Vista Client M	anager:	
Resolution:		

ID: SR - AF Rev.: 0 Rev. Date: 11/08/2019 Page: 1 of 1

Work Order 2000096 Page 16 of 16

ANALYTICAL REPORT

December 16, 2019

CDIM Engineering - San Francisco, CA

Sample Delivery Group: L1168712

Samples Received: 12/09/2019

Project Number: 101-004

Description: LRTC Industrial Stormwater

Report To: Bryan Starks

45 Polk Street

3rd Floor

San Francisco, CA 94102

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager

Cp: Cover Page	1				
Tc: Table of Contents	2				
Ss: Sample Summary	3				
Cn: Case Narrative	4				
Sr: Sample Results	5				
TS2-I-191207 L1168712-01	5				
TS3-I-191207 L1168712-02	6				
TS4-I-191207 L1168712-03	7				
TS1-I-191207 L1168712-04	8				
Qc: Quality Control Summary	9				
Gravimetric Analysis by Method 2540 D-2011	9				
Wet Chemistry by Method 1664A	11				
Wet Chemistry by Method 4500H+ B-2011	12				
Metals (ICPMS) by Method 200.8	23				
GI: Glossary of Terms	26				
Al: Accreditations & Locations					
Sc: Sample Chain of Custody	28				

			Collected by	Collected date/time	Received da	te/time
TS2-I-191207 L1168712-01 WW			BS	12/07/19 08:35	12/09/19 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1394715	1	12/11/19 13:30	12/11/19 17:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1393571	1	12/09/19 20:00	12/09/19 20:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394172	1	12/11/19 07:25	12/11/19 15:04	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS3-I-191207 L1168712-02 WW			BS	12/07/19 09:13	12/09/19 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1394715	1	12/11/19 13:30	12/11/19 17:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1393571	1	12/09/19 20:00	12/09/19 20:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394172	1	12/11/19 07:25	12/11/19 15:07	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
TS4-I-191207 L1168712-03 WW			BS	12/07/19 09:40	12/09/19 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1394715	1	12/11/19 13:30	12/11/19 17:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1393571	1	12/09/19 20:00	12/09/19 20:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394172	1	12/11/19 07:25	12/11/19 15:10	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS1-I-191207 L1168712-04 WW			BS	12/07/19 08:12	12/09/19 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1395315	1	12/12/19 10:13	12/12/19 12:22	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1394701	1	12/11/19 20:50	12/11/19 20:50	MSP	Mt. Juliet, TN

WG1394538

WG1395905

1

1

12/11/19 16:14

12/13/19 13:40

SAMPLE SUMMARY

Metals (ICPMS) by Method 200.8

Metals (ICPMS) by Method 200.8

12/12/19 15:32

12/14/19 12:02

JPD

JPD

Mt. Juliet, TN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

Brian Ford Project Manager

Buar Ford

101-004

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 08:35

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	16000	<u>J P1</u>	3500	25000	1	12/11/2019 17:08	WG1394715

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		763	5260	1	12/12/2019 21:17	WG1395550

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.64	<u>T8</u>	1	12/09/2019 20:00	WG1393571

Sample Narrative:

L1168712-01 WG1393571: 7.64 at 17.1C

СQс Gl

Metals (ICPMS) by Method 200.8

	-						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	208		20.0	100	1	12/11/2019 15:04	WG1394172
Iron	361		15.0	100	1	12/11/2019 15:04	WG1394172
Lead	9.24		0.260	1.00	1	12/11/2019 15:04	WG1394172
Zinc	95.3		1.91	10.0	1	12/11/2019 15:04	WG1394172

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 09:13

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	2400	<u>J</u>	700	5000	1	12/11/2019 17:08	WG1394715

Sample Narrative:

L1168712-02 WG1394715: Reporting limit determined by filtrate volume.

Ss

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		806	5560	1	12/12/2019 21:17	WG1395550

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
pH	7.40	<u>T8</u>	1	12/09/2019 20:00	WG1393571

СQс

Gl

Sample Narrative:

L1168712-02 WG1393571: 7.4 at 17.5C

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	72.8	<u>J</u>	20.0	100	1	12/11/2019 15:07	WG1394172
Iron	156		15.0	100	1	12/11/2019 15:07	WG1394172
Lead	8.08		0.260	1.00	1	12/11/2019 15:07	WG1394172
Zinc	69.3		1.91	10.0	1	12/11/2019 15:07	WG1394172

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 09:40

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	44000		3500	25000	1	12/11/2019 17:08	WG1394715

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		797	5490	1	12/12/2019 21:17	WG1395550

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	7.50	<u>T8</u>	1	12/09/2019 20:00	WG1393571

Cn

Sample Narrative:

L1168712-03 WG1393571: 7.5 at 17.6C

СQс

Gl

Metals (ICPMS) by Method 200.8

	,						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	281		20.0	100	1	12/11/2019 15:10	WG1394172
Iron	619		15.0	100	1	12/11/2019 15:10	WG1394172
Lead	15.5		0.260	1.00	1	12/11/2019 15:10	WG1394172
Zinc	106		1.91	10.0	1	12/11/2019 15:10	WG1394172

ΆΙ

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 08:12

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	248000		14000	100000	1	12/12/2019 12:22	WG1395315

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		755	5210	1	12/12/2019 21:17	WG1395550

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	8.49	<u>T8</u>	1	12/11/2019 20:50	WG1394701

Cn

Sample Narrative:

L1168712-04 WG1394701: 8.49 at 15.2C

СQс

Metals (ICPMS) by Method 200.8

•							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	1980		20.0	100	1	12/12/2019 15:32	WG1394538
Iron	8710		15.0	100	1	12/12/2019 15:32	WG1394538
Lead	438		0.260	1.00	1	12/12/2019 15:32	WG1394538
7inc	2100		1.91	10.0	1	12/14/2019 12:02	WG1395905

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1168712-01,02,03

Method Blank (MB)

(MB) R3481652-1 12/11/1	9 17:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

L1168712-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-01 12/11/19 17:08 • (DUP) R3481652-3 12/11/19 17:08

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	16000	19000	1	17 1	J P1	5

[†]Cn

(OS) L1168739-01 12/11/19 17:08 • (DUP) R3481652-4 12/11/19 17:08

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	280000	296000	1	5.56	P1	5

Laboratory Control Sample (LCS)

(LCS) R3481652-2 12/11/19 17:08

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	868000	112	85.0-115	

12/16/19 14:41

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

U

L1168712-04


Method Blank (MB)

Suspended Solids

(MB) R3482510-1 12/12/19 12:22

MB Result MB Qualifier MB MDL

Analyte ug/l ug/l

(OS) L1169169-03 12/12/19 12:22 • (DUP) R3482510-4 12/12/19 12:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	192000	176000	1	8.70	J3	5

^⁴Cn

(LCS) R3482510-2 12/12/19 12:22

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 1664A

L1168712-01,02,03,04

Method Blank (MB)

TPH - Oil & Grease

(MB) R3481949-1 12/12/19 21:17 MB Result Analyte ug/l

U

MB Qualifier	MB MDL	MB RD
	ug/l	ug/l
	725	5000

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3481949-2	12/12/19 21:17 • (LCSD)	R3481949-3	12/12/19 21:17	
	Spike Amount	LCS Result	LCSD Result	

(LCS) NS401343-2 12/12/13	21.17 • (LC3D)	K3401343-3 1	2/12/13/21.17							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
TPH - Oil & Grease	20000	17800	21000	89.0	105	64 0-132			16.5	34

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-01,02,03

L1167901-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1167901-01 12/09/19 20:00 • (DUP) R3480683-2 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
nH	7 38	7 37	1	0.136		1

Ss

Sample Narrative:

OS: 7.38 at 16.2C DUP: 7.37 at 16.2C

L1168110-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-01 12/09/19 20:00 • (DUP) R3480683-3 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	7.38	7.40	1	0.271		1

Sample Narrative: OS: 7.38 at 15.2C DUP: 7.4 at 15.2C

L1168110-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-02 12/09/19 20:00 • (DUP) R3480683-4 12/09/19 20:00

•	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.40	7.41	1	0.135		1

Sample Narrative:

OS: 7.4 at 14.6C DUP: 7.41 at 13.9C

L1168110-03 Original Sample (OS) • Duplicate (DUP)

(03) 21100110 03 12/03/13	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	7.22	7.23	1	0.138		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168712 DATE/TIME:

12/16/19 14:41

PAGE:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-01,02,03

L1168110-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-03 12/09/19 20:00 • (DUP) R3480683-5 12/09/19 20:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SII	SU		%		%

OS: 7.22 at 14.8C DUP: 7.23 at 14.2C

Analyte

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPI Limits
u	su		%		%

L1168110-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-04 12/09/19 20:00 • (DUP) R3480683-6 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
nH	7 25	7.26	1	0.138		1

Sample Narrative:

OS: 7.25 at 16.6C DUP: 7.26 at 16.3C

L1168110-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-05 12/09/19 20:00 • (DUP) R3480683-7 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.23	7.28	1	0.689		1

Sample Narrative:

OS: 7.23 at 14.8C DUP: 7.28 at 13.5C

L1168110-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-06 12/09/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	su	SU		%		%
рН	7.20	7.20	1	0.000		1

Sample Narrative:

OS: 7.2 at 14.2C DUP: 7.2 at 14.2C

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-01,02,03

L1168110-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-07 12/09/19 20:00 • (DUP) R3480683-9 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
nH	7 27	7 3 2	1	0.685		1

Sample Narrative:

OS: 7.27 at 160C DUP: 7.32 at 16.2C

L1168110-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-08 12/09/19 20:00 • (DUP) R3480683-10 12/09/19 20:00

(00) = 100 110 1210 1210 1210 1210 1210 1210	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
pH	7.33	7.34	1	0.136		1

Sample Narrative:

OS: 7.33 at 16.4C DUP: 7.34 at 16.3C

L1168110-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-09 12/09/19 20:00 • (DUP) R3480683-11 12/09/19 20:00

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	7.24	7.25	1	0.138		1

Sample Narrative:

OS: 7.24 at 17.1C DUP: 7.25 at 16.8C

L1168110-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-10 12/09/19 20:00 •	(DUP	R3480683-12	12/09/19 20:0	0C
-----------------------------------	------	-------------	---------------	----

(03) 21100110 10 12/03/13 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	7.20	7.20	1	0.000		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168712

DATE/TIME: 12/16/19 14:41

PAGE:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-01,02,03

L1168110-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-10 12/09/19 20:00 • (DUP) R3480683-12 12/09/19 20:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SII	SII		%		%

²Tc

OS: 7.2 at 17.9C DUP: 7.2 at 17.6C

Analyte

L1168110-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-11 12/09/19 20:00 • (DUP) R3480683-13 12/09/19 20:00

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	SU	SU		%		%	
nH	7.26	7 29	1	0.412		1	

Sample Narrative:

OS: 7.26 at 17.7C DUP: 7.29 at 17.8C

Al

L1168157-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168157-02 12/09/19 20:00 • (DUP) R3480683-14 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.30	7.34	1	0.546		1

⁹Sc

Sample Narrative:

OS: 7.3 at 18.9C DUP: 7.34 at 20C

L1168287-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168287-02 12/09	9/19 20:00 • (DUF	P) R3480683-1	5 12/09/19	20:00		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
nH	6 99	6.00	1	0.200		1

Sample Narrative:

OS: 6.88 at 19.3C

DUP: 6.9 at 14.6C

ACCOUNT:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-01,02,03

L1168322-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168322-01 12/09/19 20:00 • (DUP) R3480683-16 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
nH	7.24	7 27	1	0.414		1

Ss

Sample Narrative:

OS: 7.24 at 18.9C DUP: 7.27 at 19.6C

L1168711-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-01 12/09/19 20:00 • (DUP) R3480683-17 12/09/19 20:00

(03) 11108/11-01 12/09/19 2	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
nH	7 11	7.06	1	0.706		1

⁸Al

Sample Narrative:

OS: 7.11 at 17.1C DUP: 7.06 at 17.1C

L1168711-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-03 12/09/19 20:00 • (DUP) R3480683-18 12/09/19 20:00

•	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.56	7.57	1	0.132		1

Sample Narrative:

OS: 7.56 at 16.6C DUP: 7.57 at 16.8C

L1168712-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-01 12/09/19 20:00 • (DUP) R3480683-19 12
--

(03) 11100/12-01 12/03/13	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	7.64	7.68	1	0.522		1

Sample Narrative:

ACCOUNT:
CDIM Engineering - San Francisco, CA

PROJECT: 101-004

SDG: L1168712 DATE/TIME: 12/16/19 14:41

PAGE:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-01,02,03

L1168712-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-01 12/09/19 20:00 • (DUP) R3480683-19 12/09/19 20:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SII	SII		%		%

²Tc

OS: 7.64 at 17.1C DUP: 7.68 at 16.8C

Analyte

L1168712-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-02 12/09/19 20:00 • (DUP) R3480683-20 12/09/19 20:00

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	Su	Su		%		%	
рН	7.40	7.41	1	0.135		1	

Sample Narrative:

OS: 7.4 at 17.5C DUP: 7.41 at 17.2C

L1168712-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-03 12/09/19 20:00 • (DUP) R3480683-21 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	7.50	7.52	1	0.266		1

⁹Sc

Sample Narrative:

OS: 7.5 at 17.6C DUP: 7.52 at 17.5C

Laboratory Control Sample (LCS)

(LCS) R3480683-1 12/09/19 20:00						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	su	SU	%	%		
На	10.0	10.0	100	99.0-101		

Sample Narrative:

LCS: 10.01 at 19.8C

12/16/19 14:41

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168381-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168381-01 12/11/19 20:50 • (DUP) R3481494-5 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	Su		%		%
nH	7.86	7.86	1	0.000		1

Sample Narrative:

OS: 7.86 at 15C DUP: 7.86 at 15.1C

Ss

L1168711-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1168711-04 12/11/19 20:50 • (DLIP) P3481494-6 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	su	su		%		%
рН	7.67	7.67	1	0.000		1

Sample Narrative:

OS: 7.67 at 15.4C DUP: 7.67 at 15.8C

L1168711-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-05 12/11/19 20:50 • (DUP) R3481494-7 12/11/19 20:50

	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.56	7.58	1	0.264		1

Sample Narrative:

OS: 7.56 at 15.4C DUP: 7.58 at 15.8C

L1168712-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1168712-04 12/11/19 20:50 • (DLIP) R3481494-8 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	8.49	8.50	1	0.118		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168712

DATE/TIME: 12/16/19 14:41

PAGE:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-04 12/11/19 20:50 • (DUP) R3481494-8 12/11/19 20:50

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
su	SU		%		%

OS: 8.49 at 15.2C DUP: 8.5 at 15.3C

Analyte

L1168740-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168740-01 12/11/19 20:50 • (DUP) R3481494-9 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	7.39	7.39	1	0.000		1

Sample Narrative:

OS: 7.39 at 17.7C DUP: 7.39 at 17.6C

L1168785-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168785-01 12/11/19 20:50 • (DUP) R3481494-10 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.53	7.54	1	0.133		1

Sc

Sample Narrative:

OS: 7.53 at 14.5C DUP: 7.54 at 14.5C

L1168786-01 Original Sample (OS) • Duplicate (DUP)

(OS) | 1168786-01 12/11/19 20:50 • (DLIP) R3481494-11 12/11/19 20:50

(03) 11100700-01 12/11/19 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
nH	6.22	6.21	1	0.161		1

Sample Narrative:

OS: 6.22 at 15.6C DUP: 6.21 at 15.5C

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168787-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168787-01 12/11/19 20:50 • (DUP) R3481494-12 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
На	6.10	6.11	1	0.164		1

Sample Narrative:

OS: 6.1 at 15C DUP: 6.11 at 15.1C

L1168792-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168792-01 12/11/19 20:50 • (DUP) R3481494-13 12/11/19 20:50

,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	8.56	8.56	1	0.000		1

Sample Narrative: OS: 8.56 at 17.6C

DUP: 8.56 at 17.6C

L1168800-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168800-01 12/11/19 20:50 • (DUP) R3481494-14 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	Su		%		%
рН	8.58	8.57	1	0.117		1

Sample Narrative:

OS: 8.58 at 15.4C DUP: 8.57 at 15.3C

L1169147-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169147-01 12/11/19 2	20:50 • (DUP)	R3481494-15	12/11/19 20:50
-----------------------------	---------------	-------------	----------------

(03) 11103147 01 12/11/13 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	8.29	8.30	1	0.121		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168712

DATE/TIME: 12/16/19 14:41

PAGE:

ONE LAB. NATIONWIDE.

Ss

[†]Cn

Sc

Wet Chemistry by Method 4500H+ B-2011

L1169147-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169147-01 12/11/19 20:50 • (DUP) R3481494-15 12/11/19 20:50

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
su	SU		%		%

OS: 8.29 at 17.9C DUP: 8.3 at 17.8C

Analyte

L1169161-02 Original Sample (OS) • Duplicate (DUP)

(OS) | 1169161-02 | 12/11/19 20:50 • (DLIP) | R3481494-16 | 12/11/19 20:50

(OS) E1109101-02 12/11/19 2	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
pH	8.96	8.97	1	0.112		1

Sample Narrative:

OS: 8.96 at 15.6C DUP: 8.97 at 15.5C

L1169197-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169197-01 12/11/19 20:50 • (DUP) R3481494-17 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
Н	8.00	8.00	1	0.000		1

Sample Narrative:

OS: 8 at 16.1C DUP: 8 at 16.2C

L1169198-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169198-02 12/11/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	SU	SU		%		%
рН	7.97	7.96	1	0.126		1

Sample Narrative:

OS: 7.97 at 16C DUP: 7.96 at 16.7C

> ACCOUNT: CDIM Engineering - San Francisco, CA

PROJECT: 101-004

SDG: L1168712

DATE/TIME: 12/16/19 14:41

PAGE:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168712-04

L1169201-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169201-02 12/11/19 20:50 • (DUP) R3481494-19 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
nH	6.53	6.53	1	0.000		1

Sample Narrative:

OS: 6.53 at 15.9C DUP: 6.53 at 16C

L1169306-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169306-01 12/11/19 20:50 • (DUP) R3481494-20 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	6.64	6.67	1	0.451		1

Sample Narrative:

OS: 6.64 at 17.3C

DUP: 6.67 at 17.4C

L1169306-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169306-02 12/11/19 20:50 • (DUP) R3481494-21 12/11/19 20:50

· ,	Original Result	: DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	8.76	8.68	1	0.917		1

Sample Narrative:

OS: 8.76 at 17.2C

DUP: 8.68 at 17.1C

Laboratory Control Sample (LCS)

(LCS) R3481494-1	12/11/19	20:50
------	--------------	----------	-------

(LCS) R3461494-1 12/11/19	20.50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	su	SU	%	%	
пЦ	10.0	10.0	100	99 O 101	

Sample Narrative:

LCS: 10.01 at 18C

ACCOUNT:
CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1168712-01,02,03

Method Blank (MB)

(MB) R3481402-1 12/11/19 14:07

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3481402-2 12/11/19 14:11 • (LCSD) R3481402-3 12/11/19 14:14

(/	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	4820	4910	96.5	98.2	85.0-115			1.78	20
Iron	5000	4850	4940	96.9	98.8	85.0-115			1.94	20
Lead	50.0	48.5	50.6	97.0	101	85.0-115			4.18	20
Zinc	50.0	49.7	51.5	99.3	103	85.0-115			3.59	20

L1168711-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1168711-03 12/11/19 14:17 • (MS) R3481402-5 12/11/19 14:24 • (MSD) R3481402-6 12/11/19 14:27

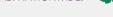
(00) =		Original Result	•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	U	4810	5070	96.1	101	1	70.0-130			5.34	20
Iron	5000	34.9	4830	5000	95.9	99.4	1	70.0-130			3.56	20
Lead	50.0	0.562	50.6	51.6	100	102	1	70.0-130			1.95	20
Zinc	50.0	55.0	101	104	93.0	98.6	1	70.0-130			2.71	20

L1168815-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1168815-01 12/11/19 14:31 • (MS) R3481402-7 12/11/19 14:34 • (MSD) R3481402-8 12/11/19 14:37

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	360	5300	5310	98.8	98.9	1	70.0-130			0.146	20
Iron	5000	ND	5300	5140	104	101	1	70.0-130			2.98	20
Lead	50.0	ND	53.2	50.0	106	99.3	1	70.0-130			6.29	20
Zinc	50.0	45.6	92.0	96.9	92.8	103	1	70.0-130			5.20	20

ONE LAB. NATIONWIDE.


Metals (ICPMS) by Method 200.8

L1168712-04

Method Blank (MB)

(MB) R3481875-1 12/12/19 14:50

	MB Result	MB Qualifier	MB MDL	MB RDI
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	0.354	J	0.260	1.00

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3481875-2 12/12/19 14:53 • (LCSD) R3481875-3 12/12/19 14:57

(200) 110-1010/0 2 12/12/13	3 14.55 · (LCSD)	110-010755	12/12/13 14.57							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	5500	5400	110	108	85.0-115			1.80	20
Iron	5000	5460	5410	109	108	85.0-115			0.850	20
Lead	50.0	53.8	55.5	108	111	85.0-115			2.99	20

GI

L1168711-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1168711-04 12/12/19 15:00 • (MS) R3481875-5 12/12/19 15:06 • (MSD) R3481875-6 12/12/19 15:10

	, ,		,	,									
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	ı
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	-
Aluminum	5000	164	5450	5720	106	111	1	70.0-130			4.86	20	
Iron	5000	327	5830	5760	110	109	1	70.0-130			1.18	20	
Lead	50.0	15.9	68.8	70.0	106	108	1	70.0-130			1.73	20	

9_

	⁹ Sc
П	

L1169410-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1169410-01 12/12/19 15:13 • (MS) R3481875-7 12/12/19 15:16 • (MSD) R3481875-8 12/12/19 15:19

(00) 21100 110 01 12/1	30) 21100 110 01 12/12/10 10:10 (1110) 10:10 10:10 10:10 10:10 10:10 10:10 10:10 10:10 10:10 10:10 10:10 10:10												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Aluminum	5000	144	5170	5220	100	101	1	70.0-130			0.888	20	
Iron	5000	27.5	5230	5160	104	103	1	70.0-130			1.41	20	
Lead	50.0	0.459	50.9	51.5	101	102	1	70.0-130			1.26	20	

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1168712-04

Method Blank (MB)

(MB) R3482357-1 12/14/19 11:32											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	ug/l		ug/l	ug/l							
Zinc	U		1.91	10.0							

(LCS) R3482357-2 12/14/19	9 11:35 • (LCSD)	R3482357-3 1	12/14/19 11:38							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Zinc	50.0	48.5	49.2	96.9	98.5	85.0-115			1.60	20

L1169450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1169450-02 12/14/19 11:42 • (MS) R3482357-5 12/14/19 11:48 • (MSD) R3482357-6 12/14/19 11:52

,	,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Ana	alyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
7in	C	50.0	17.5	62 1	63.0	891	90 9	1	70 0-130			148	20

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	2 Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description

J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

PAGE:

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD

G180

							Annh	raia Trons		d Tiese	X Stan	dard	□ Other			_			
LABORATORY: ESC Laboratory 12065 Lebanon Road, Mt. Juliet, TN 37122 (615) 773-9772 Brian Ford INSTRUCTIONS FOR LAB PERSONNEL: Please send analytic results, electronic deliverables and the original chain-of-custody form to: bas@cdimengineering.com, mec@cdimengineering.com sab@cdimengineering.com							GeoTracker EDF required?											other scans.	
CDIM CON	TACT:	Project Manager:			- 1		·						EQUEST					COC Number:	
CDIM Engir	neering	Phone Number	415-498-053									T							
	eet, 3rd Floor	Sampled by: 35					(QC	EM	3							-			
	sco, California 94102	Sample date(s): / 3					2540	SGT-HEM)	4									Page	of 1
		Sample date(s).	4//11				W.	SG	L2						1.0			rage	01
PROJECT	INFORMATION					1 13	Solids (SM 2540D)	664A	7 '0										
Job Name:	LRTC Industrial Stormwater						Solic	16	MS)									SDG nu	mber:
lab #	100 101					8		PA	- N										
Job#:	101-004					pH (SM 4500HB)	Suspended	Grease (EPA 1664A	200.8 ICP-N								1		
Address:	402 Wright Avenue, Richmond CA 94804	4				45	dsn	rea	00.8										
			Sample	Sample	# of	(SN	a S	8 8	A Z									Comple Con	IGo Noton
Lab ID	Sample Identification	Sample Date	Time	Matrix	Cont.	F	Total	Oil &	(EPA									Sample Spec	cinc notes:
	TS1-I- 1917.07	17/1/19	8:12	W	4	X	X		X									168712	
		2/2/1			1									+ +				110 11-	75
	TS2-1- 191201	12/7/19	8:35	W	4	X	X	X	X										61
	TS3-1- 101207	17/7/19	9:13	W	4	X	X	X	X										n
	TS4-1- 19 1707	10171	1	w	1		X		X										07
	134-1- 1160 /	12//19	9:40	VV	4	X	^	^	^	-									0)
	1	111																	
									-			-				1			
						1 3													
							18												
									-			1				+			
						1													
				Field Filte	rod (V)				-										
				riela riite	reu (x):														
Preser	vation Used: $1 = Ice$, $2 = HCI$; $3 = H2SO4$;	4=HNO ₃ ; 5=NaOH; 6= Othe	er		_	1	1	1,3	1,4										
Special In	structions/QC Requirements & Co	omments: Level II Rep	ort. Repor	t with repor	rting lim	it and	d me	thod d	letect	tion lim	nit. Ana	lyze ar	nd repoi	t only th	ne meta	Is listed	above.		
																		Ma	
Relinquished	he / = /	Company:		Date/Time:		Dana	ived b	ov. A		0	1/		_	Comme	nv.			Date/Time:	
Celliquisited	least 5	CDIN	1		1005	Rece	iveu L	1/1	100	1	Kon.		0	2/	ile.			119/19	81:W
Relinquished	by:	Company:	-	Date/Time:		Rece	ived b	ov:	W	0	eny	1		Compa	nv:			Date/Time:	
		П						,					0						
Relinquished	l by:	Company:	- 10	Date/Time:		Rece	ived b	by:						Compa	ny:			Date/Time:	
													0						
	x = Samples released to a secured,	locked area.						• = Sa	amples	s receive	d from a	secured	, locked a	rea					
11111	SAMPLERS NAME	R. CL	1.							MOBILE	#	0	04	5	Cy.	30		-	
	or the state of th	Doyand Stav	47	1			-8		- '			0	0	~	10			-	
	SAMPLERS SIGNATU	Boyan Stav	Chi	1			1		ı	DATE / T	IME	12	17	119	(250			
		10	7				1				1-7.	A) .	7 11	, ,	,				
										l	11 /5	.0=1.	120						

ANALYTICAL REPORT

December 16, 2019

Sample Delivery Group: L1168711

Samples Received: 12/09/2019

Project Number: 101-004

Description: LRTC Industrial Stormwater

CDIM Engineering - San Francisco, CA

Report To: Bryan Starks

45 Polk Street

3rd Floor

San Francisco, CA 94102

Entire Report Reviewed By:

Buar Ford

Brian Ford Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TS3-E-191207 L1168711-01	5
TS4-E-191207 L1168711-02	6
TSX-E-191207 L1168711-03	7
TS1-E-191207 L1168711-04	8
TS2-E-191207 L1168711-05	9
Qc: Quality Control Summary	10
Gravimetric Analysis by Method 2540 D-2011	10
Wet Chemistry by Method 1664A	12
Wet Chemistry by Method 4500H+ B-2011	13
Metals (ICPMS) by Method 200.8	30
GI: Glossary of Terms	33
Al: Accreditations & Locations	34
Sc: Sample Chain of Custody	35

TC2 F 101207 1100711 01 \\\\\\\\\\\\\\\\\\\\\\\\\\\\			Collected by BS	Collected date/time 12/07/19 09:20	Received da 12/09/19 10:2	
TS3-E-191207 L1168711-01 WW						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1394715	1	12/11/19 13:30	12/11/19 17:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1393571	1	12/09/19 20:00	12/09/19 20:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394172	1	12/11/19 07:25	12/11/19 14:57	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS4-E-191207 L1168711-02 WW			BS	12/07/19 09:47	12/09/19 10:2	25
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 D-2011	WG1394715	1	12/11/19 13:30	12/11/19 17:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1393689	1	12/11/19 18:00	12/11/19 18:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394172	1	12/11/19 07:25	12/11/19 15:00	JPD	Mt. Juliet, TN
			Collected by	Collected date/time		
TSX-E-191207 L1168711-03 WW			BS	12/07/19 08:48	12/09/19 10:2	25
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 D-2011	WG1394715	1	12/11/19 13:30	12/11/19 17:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1393571	1	12/09/19 20:00	12/09/19 20:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394172	1	12/11/19 07:25	12/11/19 14:17	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS1-E-191207 L1168711-04 WW			BS	12/07/19 08:15	12/09/19 10:2	25
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 D-2011	WG1395315	1	12/12/19 10:13	12/12/19 12:22	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 07:01	12/12/19 21:17	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1394701	1	12/11/19 20:50	12/11/19 20:50	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394538	1	12/11/19 16:14	12/12/19 15:00	JPD	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1395905	1	12/13/19 13:40	12/14/19 11:55	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS2-E-191207 L1168711-05 WW			BS	12/07/19 08:45	12/09/19 10:2	25
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 D-2011	WG1395315	1	12/12/19 10:13	12/12/19 12:22	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1395550	1	12/12/19 10:13	12/12/19 12:22	MBP	Mt. Juliet, TN
Wet Chemistry by Method 1604A Wet Chemistry by Method 4500H+ B-2011	WG1394701	1	12/12/19 07:01	12/11/19 20:50	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1394701 WG1394538	1	12/11/19 20.50	12/11/19 20:30	JPD	Mt. Juliet, TN
Micros (ICI MS) by Microsco	W01334330		12/11/13 10.14	12/12/13 13.23	JΓD	ivit. Juliet, TN

SAMPLE SUMMARY

Metals (ICPMS) by Method 200.8

WG1395905

12/13/19 13:40

12/14/19 11:58

JPD

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Cn

Ss

Brian Ford Project Manager

Buar Ford

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 09:20

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	U		350	2500	1	12/11/2019 17:08	WG1394715

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
TPH - Oil & Grease	U		771	5320	1	12/12/2019 21:17	WG1395550	

Ss

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
рН	7.11	<u>T8</u>	1	12/09/2019 20:00	WG1393571

Sample Narrative:

L1168711-01 WG1393571: 7.11 at 17.1C

Metals (ICPMS) by Method 200.8

, , ,							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/11/2019 14:57	WG1394172
Iron	79.6	<u>J</u>	15.0	100	1	12/11/2019 14:57	WG1394172
Lead	1.97		0.260	1.00	1	12/11/2019 14:57	WG1394172
Zinc	50.0		1.91	10.0	1	12/11/2019 14:57	WG1394172

ΆΙ

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 09:47

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	400	<u>J</u>	350	2500	1	12/11/2019 17:08	WG1394715

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		788	5440	1	12/12/2019 21:17	WG1395550

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.59	<u>T8</u>	1	12/11/2019 18:00	WG1393689

Sample Narrative:

L1168711-02 WG1393689: 7.59 at 18.1C

СQс Gl

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	32.1	J	20.0	100	1	12/11/2019 15:00	WG1394172
Iron	29.6	<u>J</u>	15.0	100	1	12/11/2019 15:00	WG1394172
Lead	0.546	<u>J</u>	0.260	1.00	1	12/11/2019 15:00	WG1394172
Zinc	7.57	J	1.91	10.0	1	12/11/2019 15:00	WG1394172

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 08:48

L1168711

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	U		350	2500	1	12/11/2019 17:08	WG1394715

Sample Narrative:

L1168711-03 WG1394715: Insufficient sample volume for DUP study.

°Ss

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		780	5380	1	12/12/2019 21:17	WG1395550

Sample Narrative:

L1168711-03 WG1395550: Insufficient sample volume for DUP study

СQс

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.56	<u>T8</u>	1	12/09/2019 20:00	<u>WG1393571</u>

Sample Narrative:

L1168711-03 WG1393571: 7.56 at 16.6C

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/11/2019 14:17	WG1394172
Iron	34.9	J	15.0	100	1	12/11/2019 14:17	WG1394172
Lead	0.562	J	0.260	1.00	1	12/11/2019 14:17	WG1394172
Zinc	55.0		1.91	10.0	1	12/11/2019 14:17	WG1394172

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 08:15

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	19000	<u>J</u>	3500	25000	1	12/12/2019 12:22	WG1395315

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		763	5260	1	12/12/2019 21:17	WG1395550

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.67	<u>T8</u>	1	12/11/2019 20:50	WG1394701

Cn

Sample Narrative:

L1168711-04 WG1394701: 7.67 at 15.4C

СQс

Gl

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	ug/l		ug/l	ug/l		date / time			
Aluminum	164		20.0	100	1	12/12/2019 15:00	WG1394538		
Iron	327		15.0	100	1	12/12/2019 15:00	WG1394538		
Lead	15.9		0.260	1.00	1	12/12/2019 15:00	WG1394538		
Zinc	106		1.91	10.0	1	12/14/2019 11:55	WG1395905		

ONE LAB. NATIONWIDE.

Collected date/time: 12/07/19 08:45

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	520	J	364	2600	1	12/12/2019 12:22	WG1395315

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		806	5560	1	12/12/2019 21:17	WG1395550

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.56	<u>T8</u>	1	12/11/2019 20:50	WG1394701

Cn

Sample Narrative:

L1168711-05 WG1394701: 7.56 at 15.4C

СQс

Gl

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/12/2019 15:29	WG1394538
Iron	39.3	<u>J</u>	15.0	100	1	12/12/2019 15:29	WG1394538
Lead	0.761	ВJ	0.260	1.00	1	12/12/2019 15:29	WG1394538
Zinc	50.3		1.91	10.0	1	12/14/2019 11:58	WG1395905

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1168711-01,02,03

Method Blank (MB)

(MB) R3481652-1 12/11/19	9 17:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

L1168712-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-01 12/11/19 17:08 • (DUP) R3481652-3 12/11/19 17:08

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	16000	19000	1	17 1	J P1	5

[†]Cn

L1168739-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168739-01 12/11/19 17:08 • (DUP) R3481652-4 12/11/19 17:08

(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	280000	296000	1	5.56	<u>P1</u>	5

Laboratory Control Sample (LCS)

(LCS) R3481652-2 12/11/19 17:08

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	868000	112	85.0-115	

12/16/19 14:48

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1168711-04,05

Method Blank (MB)

Suspended Solids

(MB) R3482510-1 12/12/19 12:22 MB Result MB Qualifier MB MDL Analyte ug/l ug/l

U

MB RDL ug/l

2500

[†]Cn

(OS) L1169152-01 12/12/19 12:22 • (DUP) R3482510-3 12/12/19 12:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	328000	328000	1	0.000		5

350

(OS) L1169169-03 12/12/19 12:22 • (DUP) R3482510-4 12/12/19 12:22

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	192000	176000	1	8.70	J3	5

Laboratory Control Sample (LCS)

(LCS) R3482510-2 12/12/19 12:22

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	ug/l	%	%
Suspended Solids	773000	796000	103	85.0-115

LCS Qualifier

12/16/19 14:48

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 1664A

L1168711-01,02,03,04,05

Method Blank (MB)

 (MB) R3481949-1
 12/12/19
 21:17

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 TPH - Oil & Grease
 U
 725
 5000

Laboratory Control	Sample (LCS) • I	Laboratory Control	Sample Duplicate (L)	SDI

(LCS) R3481949-2 12/1	2/19 21:17 • (LCSD)	R3481949-3	12/12/19 21:17							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
TPH - Oil & Grease	20000	17800	21000	89.0	105	64.0-132			16.5	34

[†]Cn

рΗ

Sample Narrative: OS: 7.38 at 16.2C

DUP: 7.37 at 16.2C

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

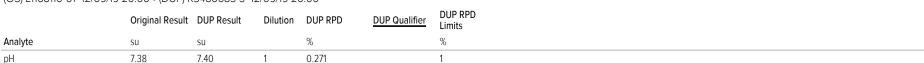
Wet Chemistry by Method 4500H+ B-2011

L1168711-01,03

L1167901-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1167901-01 12/09/19 20:00 • (DUP) R3480683-2 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
nH	7 38	7 37	1	0.136		1



(OS) L1168110-01 12/09/19 20:00 • (DUP) R3480683-3 12/09/19 20:00

OS: 7.38 at 15.2C DUP: 7.4 at 15.2C

L1168110-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-02 12/09/19 20:00 • (DUP) R3480683-4 12/09/19 20:00

. ,	Original Res	sult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	7.40	7.41	1	0.135		1

Sample Narrative:

OS: 7.4 at 14.6C

DUP: 7.41 at 13.9C

L1168110-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-03	12/09/19 20:00 •	(DUP) R3480683-5	12/09/19 20:00

(05) [1168110-03 12/09/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.22	7.23	1	0.138		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168711

DATE/TIME: 12/16/19 14:48

PAGE: 13 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-01,03

L1168110-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-03 12/09/19 20:00 • (DUP) R3480683-5 12/09/19 20:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SII	SU		%		%

OS: 7.22 at 14.8C DUP: 7.23 at 14.2C

Analyte

L1168110-04 Original Sample (OS) • Duplicate (DUP)

(03) 11108110-04 12/09/19 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
На	7.25	7.26	1	0.138		1

Sample Narrative:

OS: 7.25 at 16.6C DUP: 7.26 at 16.3C

L1168110-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-05 12/09/19 20:00 • (DUP) R3480683-7 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	7.23	7.28	1	0.689		1

Sample Narrative:

OS: 7.23 at 14.8C DUP: 7.28 at 13.5C

L1168110-06 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-06 12/09/19 20:00 • ([DUP)	R3480683-8	12/09/19 20:00
--------------------------------------	------	------------	----------------

(OS) L1168110-06 12/09/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	su	SU		%		%
рН	7.20	7.20	1	0.000		1

Sample Narrative:

OS: 7.2 at 14.2C DUP: 7.2 at 14.2C

ACCOUNT:
CDIM Engineering - San Francisco, CA

12/16/19 14:48

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-01,03

L1168110-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-07 12/09/19 20:00 • (DUP) R3480683-9 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
На	7.27	7.32	1	0.685		1

Sample Narrative:

OS: 7.27 at 160C DUP: 7.32 at 16.2C

L1168110-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-08 12/09/19 20:00 • (DUP) R3480683-10 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
pH	7.33	7.34	1	0.136		1

Sample Narrative:

OS: 7.33 at 16.4C DUP: 7.34 at 16.3C

L1168110-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-09 12/09/19 20:00 • (DUP) R3480683-11 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	Su		%		%
рН	7.24	7.25	1	0.138		1

Sample Narrative:

OS: 7.24 at 17.1C DUP: 7.25 at 16.8C

L1168110-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-10 12/09/19 20:00 • (DLIP) P3480683-12 12/09/19 20:00

(03) E1100110-10 12/03/13 2	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	7.20	7.20	1	0.000		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168711 DATE/TIME:

12/16/19 14:48

PAGE:

15 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-01,03

L1168110-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-10 12/09/19 20:00 • (DUP) R3480683-12 12/09/19 20:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SU	SU		%		%

OS: 7.2 at 17.9C

Analyte

DUP: 7.2 at 17.6C

- IC

L1168110-11 Original Sample (OS) • Duplicate (DUP)

(OS) L1168110-11 12/09/19 20:00 • (DUP) R3480683-13 12/09/19 20:00

(00) 21100110 11 12/00/10 2	Original Result					DUP Qualifier	DUP RPD Limits
Analyte	SU	S	Su		%		%
На	7.26	7.	7.29	1	0.412		1

Sample Narrative:

OS: 7.26 at 17.7C DUP: 7.29 at 17.8C

⁸Al

L1168157-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168157-02 12/09/19 20:00 • (DUP) R3480683-14 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.30	7.34	1	0.546		1

Sample Narrative:

OS: 7.3 at 18.9C DUP: 7.34 at 20C

L1168287-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168287-02 12/09/19	Original Result		Dilution		DUP Qualifier	DUP RPD Limits
nalyte	SU	su		%		%
рН	6.88	6.90	1	0.290		1

Sample Narrative:

OS: 6.88 at 19.3C

DUP: 6.9 at 14.6C

ACCOUNT:

Ss

[†]Cn

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-01,03

L1168322-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168322-01 12/09/19 20:00 • (DUP) R3480683-16 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
nH	7 24	7 27	1	0 414		1

Ss

Sample Narrative:

OS: 7.24 at 18.9C DUP: 7.27 at 19.6C

L1168711-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-01 12/09/19 20:00 • (DUP) R3480683-17 12/09/19 20:00

(00, 2.100, 11 01 12, 00, 10 2	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
На	7.11	7.06	1	0.706		1

Sample Narrative:

OS: 7.11 at 17.1C DUP: 7.06 at 17.1C

L1168711-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-03 12/09/19 20:00 • (DUP) R3480683-18 12/09/19 20:00

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.56	7.57	1	0.132		1

Sample Narrative:

OS: 7.56 at 16.6C DUP: 7.57 at 16.8C

L1168712-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-01 12/09/19 20:00 • (DUP) I	R3480683-19 12/09/19 20:00
---	----------------------------

(03) 11100/12 01 12/03/13	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	7.64	7.68	1	0.522		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168711

DATE/TIME: 12/16/19 14:48

PAGE:

17 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-01,03

L1168712-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-01 12/09/19 20:00 • (DUP) R3480683-19 12/09/19 20:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SU	SU		%		%

OS: 7.64 at 17.1C DUP: 7.68 at 16.8C

Analyte

Ss

[†]Cn

L1168712-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168/12-02 12/09/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
pH	7.40	7.41	1	0.135		1

Sample Narrative:

OS: 7.4 at 17.5C DUP: 7.41 at 17.2C

Sc

L1168712-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-03 12/09/19 20:00 • (DUP) R3480683-21 12/09/19 20:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	7.50	7.52	1	0.266		1

Sample Narrative:

OS: 7.5 at 17.6C DUP: 7.52 at 17.5C

Laboratory Control Sample (LCS)

(LCS) R3480683-1 12/09/	.CS) R3480683-1 12/09/19 20:00								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	su	SU	%	%					
рН	10.0	10.0	100	99 0-101					

Sample Narrative:

LCS: 10.01 at 19.8C

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168157-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168157-01 12/11/19 18:00 • (DUP) R3481560-2 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
На	7.34	7.33	1	0.136		1

Sample Narrative:

OS: 7.34 at 19.3C DUP: 7.33 at 18.9C

L1168168-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168168-01 12/11/19 18:00 • (DLIP) R3481560-3 12/11/19 18:00

, ,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	su		%		%
рН	8.56	8.57	1	0.117		1

Sample Narrative: OS: 8.56 at 18.7C

DUP: 8.57 at 18.7C

L1168195-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168195-02 12/11/19 18:00 • (DUP) R3481560-4 12/11/19 18:00

	Original Resu	ılt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	7.05	7.04	1	0.142		1

Sample Narrative:

OS: 7.05 at 19.2C DUP: 7.04 at 19.1C

L1168195-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1168195-04 12/11/19 18:00 • (DUP) R3481560-5 12/11/19 18:00

(00) 21100130 01 12/11/10 10	Original Result				DUP Qualifier	DUP RPD Limits
	SU	SU		%		%
pH	10.5	10.5	1	0.000		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168711

DATE/TIME: 12/16/19 14:48

PAGE: 19 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168195-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1168195-04 12/11/19 18:00 • (DUP) R3481560-5 12/11/19 18:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SU	SU		%		%

OS: 10.46 at 20C DUP: 10.46 at 20C

Analyte

Ss

[†]Cn

L1168228-01 Original Sample (OS) • Duplicate (DUP)

(03) [1108228-01 12/11/19 1	Original Result			DUP RPD	DUP Qualifier	DUP RPD
alyte	SU	su		%		%
На	8.32	8.34	1	0.240		1

Sample Narrative:

OS: 8.32 at 18.7C DUP: 8.34 at 19.2C

Sc

L1168300-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168300-01 12/11/19 18:00 • (DUP) R3481560-7 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
pH	7.13	7.18	1	0.699		1

Sample Narrative:

OS: 7.13 at 19C DUP: 7.18 at 19.2C

L1168314-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168314-01 12/11/19	, ,	:3481560-8 12 t DUP Result		DUP RPD	DUP Qualifier	DUP RPD
Analyte	su	Su		%		Limits %
рН	6.95	6.94	1	0.144		1

Sample Narrative:

OS: 6.95 at 18.6C DUP: 6.94 at 18.5C

> ACCOUNT: CDIM Engineering - San Francisco, CA

PROJECT: 101-004

SDG: L1168711

DATE/TIME: 12/16/19 14:48

PAGE: 20 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168314-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168314-02 12/11/19 18:00 • (DUP) R3481560-9 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
nalyte	SU	su		%		%
Н	6.47	6.45	1	0.310		1

Ss

Sample Narrative:

OS: 6.47 at 18.4C DUP: 6.45 at 18.5C

L1168314-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1168314-03 12/11/19 18:00 • (DLIP) P3481560-10 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	4.89	4.88	1	0.205		1

Sample Narrative:

OS: 4.89 at 18.3C DUP: 4.88 at 18.5C

L1168314-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1168314-05 12/11/19 18:00 • (DUP) R3481560-11 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	5.08	5.07	1	0.197		1

Sample Narrative:

OS: 5.08 at 19.5C DUP: 5.07 at 18.1C

L1168374-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168374-01 12/11/19 18:00 • (DUP) R3481560-12 12/11/19 18:00

abto cu cu %	Analyte su su % %	Original Result	DUP Result	Dilution	DUP RPD [DUP Qualifier	DUP RPD Limits
	Su /o /o		CII		-		o _k

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168711

DATE/TIME: 12/16/19 14:48

PAGE:

21 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-02

L1168374-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168374-01 12/11/19 18:00 • (DUP) R3481560-12 12/11/19 18:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
su	su		%		%

OS: 7.29 at 18.6C DUP: 7.34 at 19.7C

Analyte

L1168462-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1168462-14 12/11/19 18:00 • (DUP) R3481560-13 12/11/19 18:00

Sample Narrative:

OS: 7.46 at 18.7C DUP: 7.46 at 18.8C

L1168494-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168494-01 12/11/19 18:00 • (DUP) R3481560-14 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.75	7.77	1	0.258		1

Sample Narrative:

OS: 7.75 at 18.8C DUP: 7.77 at 16.6C

L1168530-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168530-01 12/11/19	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	6.52	6.49	1	0.461		1

Sample Narrative:

OS: 6.52 at 18.7C DUP: 6.49 at 18.5C

ACCOUNT:
CDIM Engineering - San Francisco, CA

PROJECT: 101-004

SDG: L1168711 DATE/TIME: 12/16/19 14:48

PAGE: 22 of 35

Ss

[†]Cn

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-02

L1168530-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168530-02 12/11/19 18:00 • (DUP) R3481560-16 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
nH	6.95	6.96	1	0 144		1

Ss

Sample Narrative:

OS: 6.95 at 18.3C DUP: 6.96 at 18.3C

L1168532-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168532-02 12/11/19 18:00 • (DUP) R3481560-17 12/11/19 18:00

⁷Gl

Sample Narrative:

OS: 7.71 at 18.4C DUP: 7.73 at 17.1C

L1168568-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168568-02 12/11/19 18:00 • (DUP) R3481560-18 12/11/19 18:00

, ,	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
pH	6.67	6.68	1	0.150		1

Sample Narrative:

OS: 6.67 at 18C

DUP: 6.68 at 17.3C

L1168711-02 Original Sample (OS) • Duplicate (DUP)

(OS	L1168711-02	12/11/19 18:00 •	(DUP) R3481560-19	12/11/19	18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.59	7.63	1	0.526		1

Sample Narrative:

ACCOUNT:
CDIM Engineering - San Francisco, CA

PROJECT: 101-004

SDG: L1168711 DATE/TIME: 12/16/19 14:48

PAGE: 23 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-02 12/11/19 18:00 • (DUP) R3481560-19 12/11/19 18:00

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Su	SU		%		%

OS: 7.59 at 18.1C DUP: 7.63 at 18.9C

Analyte

L1169134-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169134-01 12/11/19 18:00 • (DLIP) P3481560-20 12/11/19 18:00

(03) 11103134-01 12/11/13 10	Original Result				DUP Qualifier	DUP RPD Limits
	SU	su		%		%
pH	9.57	9.59	1	0.209		1

Sample Narrative:

OS: 9.57 at 18.3C DUP: 9.59 at 19.1C

L1169137-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169137-01 12/11/19 18:00 • (DUP) R3481560-21 12/11/19 18:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	9.87	9.87	1	0.000		1

Sample Narrative:

OS: 9.87 at 18.4C DUP: 9.87 at 19.6C

Laboratory Control Sample (LCS)

(LCS) R3481560-1 12/11/19 18:00						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	su	Su	%	%		
рН	10.0	10.0	100	99.0-101		

Sample Narrative:

LCS: 10.03 at 17.3C

ACCOUNT:
CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-04,05

L1168381-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168381-01 12/11/19 20:50 • (DUP) R3481494-5 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
nH	7.86	7.86	1	0.000		1

(OS) L1168711-04 12/11/19 20:50 • (DUP) R3481494-6 12/11/19 20:50

(00) 21100711 01 12/11/10 2	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU			%		%
На	7.67	7.67	67	1	0.000		1

Sample Narrative: OS: 7.67 at 15.4C

Sample Narrative: OS: 7.86 at 15C DUP: 7.86 at 15.1C

DUP: 7.67 at 15.8C

L1168711-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1168711-05 12/11/19 20:50 • (DUP) R3481494-7 12/11/19 20:50

	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	7.56	7.58	1	0.264		1

Sample Narrative:

OS: 7.56 at 15.4C DUP: 7.58 at 15.8C

L1168712-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1168712-04 12/11/19 20:50 • (DLIP) R3481494-8 12/11/19 20:50

(03) 21100712 04 12/11/13 2	Original Result				DUP Qualifier	DUP RPD Limits
	SU	Su		%		%
рН	8.49	8.50	1	0.118		1

Sample Narrative:

ACCOUNT: CDIM Engineering - San Francisco, CA PROJECT: 101-004

SDG: L1168711

DATE/TIME: 12/16/19 14:48

PAGE: 25 of 35

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-04,05

L1168712-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1168712-04 12/11/19 20:50 • (DUP) R3481494-8 12/11/19 20:50

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
SII	SII		%		%

²Tc

OS: 8.49 at 15.2C DUP: 8.5 at 15.3C

Analyte

L1168740-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168740-01 12/11/19 20:50 • (DUP) R3481494-9 12/11/19 20:50

, ,	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
pH	7.39	7.39	1	0.000		1

Sample Narrative:

OS: 7.39 at 17.7C DUP: 7.39 at 17.6C

L1168785-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168785-01 12/11/19 20:50 • (DUP) R3481494-10 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
pH	7.53	7.54	1	0.133		1

⁹Sc

Sample Narrative:

OS: 7.53 at 14.5C DUP: 7.54 at 14.5C

L1168786-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168786-01 12/11/19 20:50 • (DUP) R3481494-11 12/11/19 20:50

(03) [1100700-01 12/11/19 2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
nH	6.22	6.21	1	0.161		1

Sample Narrative:

OS: 6.22 at 15.6C DUP: 6.21 at 15.5C

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-04,05

L1168787-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168787-01 12/11/19 20:50 • (DUP) R3481494-12 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
oH	6.10	6 11	1	0 164		1

Sample Narrative:

OS: 6.1 at 15C DUP: 6.11 at 15.1C

L1168792-01 Original Sample (OS) • Duplicate (DUP)

(OS) | 1168792 O1 12/11/19 20:50 - (DLIP) P3/191/19/13 12/11/19 20:50

(03) 11100/92-01 12/11/19 2	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	8.56	8.56	1	0.000		1

Sample Narrative: OS: 8.56 at 17.6C

DUP: 8.56 at 17.6C

L1168800-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1168800-01 12/11/19 20:50 • (DUP) R3481494-14 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	Su		%		%
pH	8.58	8.57	1	0.117		1

Sample Narrative:

OS: 8.58 at 15.4C DUP: 8.57 at 15.3C

L1169147-01 Original Sample (OS) • Duplicate (DUP)

(OS) | 1169147-01 12/11/19 20:50 • (DLIP) R3481494-15 12/11/19 20:50

(03) 11103147-01 12/11/13 20	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
alyte	su	SU		%		%
рН	8.29	8.30	1	0.121		1

Sample Narrative:

ACCOUNT:
CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-04,05

L1169147-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169147-01 12/11/19 20:50 • (DUP) R3481494-15 12/11/19 20:50

Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
su	SU		%		%

²Tc

OS: 8.29 at 17.9C DUP: 8.3 at 17.8C

Analyte

L1169161-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169161-02 12/11/19 20:50 • (DUP) R3481494-16 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	su		%		%
рН	8.96	8.97	1	0.112		1

Sample Narrative:

OS: 8.96 at 15.6C DUP: 8.97 at 15.5C

⁷ GI

L1169197-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1169197-01 12/11/19 20:50 • (DUP) R3481494-17 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	Su		%		%
pH	8.00	8.00	1	0.000		1

Sample Narrative:

OS: 8 at 16.1C

DUP: 8 at 16.2C

L1169198-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169198-02 12/11/19	9 20:50 • (DUP) F	R3481494-18	12/11/19 20:			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	su		%		%
nЦ	7.07	7.06	1	0.126		1

Sample Narrative:

OS: 7.97 at 16C DUP: 7.96 at 16.7C

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1168711-04,05

L1169201-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169201-02 12/11/19 20:50 • (DUP) R3481494-19 12/11/19 20:50

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
nH	6.53	6.53	1	0.000		1

Sample Narrative:

OS: 6.53 at 15.9C DUP: 6.53 at 16C

L1169306-01 Original Sample (OS) • Duplicate (DUP)

(OS) | 1169306-01 12/11/19 20:50 • (DLIP) R3481494-20 12/11/19 20:50

(03) 1109300-01 12/11/1	9 20.30 • (DOF)	K3461434-2U	12/11/19 20).50		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	Su		%		%
nH	6.64	6.67	1	0.451		1

Sample Narrative:

OS: 6.64 at 17.3C

DUP: 6.67 at 17.4C

L1169306-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1169306-02 12/11/19 20:50 • (DUP) R3481494-21 12/11/19 20:50

•	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	8.76	8.68	1	0.917		1

Sample Narrative:

OS: 8.76 at 17.2C

DUP: 8.68 at 17.1C

Laboratory Control Sample (LCS)

(1	(S)	R3481494-1	12/11/19	20.50

(LCS) R3481494-1 12/11/19	20:50				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	Su	SU	%	%	
nH	10.0	10.0	100	99.0-101	

Sample Narrative:

LCS: 10.01 at 18C

ACCOUNT:
CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1168711-01,02,03

Method Blank (MB)

(MB) R3481402-1 12/11/19 14:07

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3481402-2 12/11/19 14:11 • (LCSD) R3481402-3 12/11/19 14:14

(/	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	4820	4910	96.5	98.2	85.0-115			1.78	20
Iron	5000	4850	4940	96.9	98.8	85.0-115			1.94	20
Lead	50.0	48.5	50.6	97.0	101	85.0-115			4.18	20
Zinc	50.0	49.7	51.5	99.3	103	85.0-115			3.59	20

L1168711-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1168711-03 12/11/19 14:17 • (MS) R3481402-5 12/11/19 14:24 • (MSD) R3481402-6 12/11/19 14:27

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	U	4810	5070	96.1	101	1	70.0-130			5.34	20
Iron	5000	34.9	4830	5000	95.9	99.4	1	70.0-130			3.56	20
Lead	50.0	0.562	50.6	51.6	100	102	1	70.0-130			1.95	20
Zinc	50.0	55.0	101	104	93.0	98.6	1	70.0-130			2.71	20

L1168815-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	360	5300	5310	98.8	98.9	1	70.0-130			0.146	20
Iron	5000	ND	5300	5140	104	101	1	70.0-130			2.98	20
Lead	50.0	ND	53.2	50.0	106	99.3	1	70.0-130			6.29	20
Zinc	50.0	45.6	92.0	96.9	92.8	103	1	70.0-130			5.20	20

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1168711-04,05

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	0.354	<u>J</u>	0.260	1.00

^¹Cp

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3481875-2	12/12/10 1/-52	(I CSD) D3/19/1975 3	12/12/10 17:57
(LCS) R34010/3-2	12/12/19 14.55 •	(LC3D) K34010/3-3	12/12/19 14.5/

(LCS) NS+01073 Z 12/12/13	7 14.55 · (LCSD)	110-0107551	12/12/13 14.57							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	5500	5400	110	108	85.0-115			1.80	20
Iron	5000	5460	5410	109	108	85.0-115			0.850	20
Lead	50.0	53.8	55.5	108	111	85.0-115			2.99	20

L1168711-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1168711-04 12/12/19 15:00 • (MS) R3481875-5 12/12/19 15:06 • (MSD) R3481875-6 12/12/19 15:10

(,	()		,	,	,,	-							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Aluminum	5000	164	5450	5720	106	111	1	70.0-130			4.86	20	
Iron	5000	327	5830	5760	110	109	1	70.0-130			1.18	20	
Lead	50.0	15.9	68.8	70.0	106	108	1	70.0-130			1.73	20	

L1169410-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1169410-01 12/12/19 15:13 • (MS) R3481875-7 12/12/19 15:16 • (MSD) R3481875-8 12/12/19 15:19

(03) 1103+10 01 12/12/	13 13:13 (1113) 113	1010707 12/12/	15 15.16 (1116	,D) 110 101070 0	12/12/10 10:10							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	144	5170	5220	100	101	1	70.0-130			0.888	20
Iron	5000	27.5	5230	5160	104	103	1	70.0-130			1.41	20
Lead	50.0	0.459	50.9	51.5	101	102	1	70.0-130			1.26	20

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1168711-04,05

Method Blank (MB)

(MB) R3482357-1 12/14/19 11:32

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Zinc	U		1.91	10.0

Ср

(LCS) R3482357-2 12/14/	'19 11:35 • (LCSD) R3482357-3	12/14/19 11:38							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Zinc	50.0	18.5	19.2	96.9	98.5	85 O-115			160	20

(OS) L1169450-02 12/14/19 11:42 • (MS) R3482357-5 12/14/19 11:48 • (MSD) R3482357-6 12/14/19 11:52

(,	Spike Amount	Original Result	•	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%	
Zinc	50.0	17.5	62.1	63.0	89.1	90.9	1	70.0-130			1.48	20	

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

Qu anner	Beschpteri
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHM

CHAIN OF CUSTODY RECORD

LABORATO ESC Labora		INSTRUCTIONS FOR L Please send analytic res							Standard X I	Other No.		Specify an	alvtic/prep me	athod and detection limit in report
12065 Lebanon Road, Mt. Juliet, TN 37122 the original chain-of-custody form to: bas@cdimengineering.com, mec@cdimengineering.com sab@cdimengineering.com						LOCUS EDD required? Yes X No Notify					Notify us o	Specify analytic/prep method and detection limit in re Notify us of any anomalous peaks in GC or other so Call immediately with any questions or problems.		
CDIM CONT	ACT:				ANALYSIS REQUESTED							COC Nur		
CDIM Engine	eering		15-498-0535				= 0							
45 Polk Street, 3rd Floor Sampled by:						(D0)	SGT-HEM)							
San Francis	co, California 94102	Sample date(s): (2/	17/19		7	254	15							Page of
PROJECT II	NFORMATION					(SM	AN							
Job Name: LRTC Industrial Stormwater					_	Solids (SM 2540D)	(EPA 1664A Al, Fe, Pb, Zr	(i)						SDG number:
Job #: Address:	101-004 402 Wright Avenue, Richmond CA 94804				pH (SM 4500HB)	Total Suspended	Grease (EPA 1664 Metals- Al, Fe, Pb,	00.8						
Lab ID	Sample Identification	Sample Date		sample # of Matrix Cont.	pH (SM	Total S	Oil & G	(EPA Z						Sample Specific Notes:
	TS1-E- 1917.07	12/7/19	8:15	w 4	X	X	XX							L1168711
	TS2-E- 19 1707	12/7/10/1	1:45	w 4	X	X	XX							
	TS3-E- 191707	17/15/9	9:20	w 4	X	X	XX							61
	TS4-E- 19 (2 07		947	w 4	X	X	XX							02
N STORY	TSX-E- 191207	1881	1:4	w 4	X	X	XX							Perform MS/MSD using additional volume provided
		1411	0111											F - SF
			F	ield Filtered (X):		-								
Preser	vation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ;	4=HNO ₃ ; 5=NaOH; 6= Other_			1	1	1, 3 1,	4						
Special In	structions/QC Requirements & Co	nments: Level II Repor	rt. Report w	vith reporting lim	it and	d me	thod det	ection limit.	Analyze an	d report	only the	metals list	ted above.	
Relinquished	grant to	Company:		te/Time: 2/2/19 1025	Rece	ived b	by:			0	Company			Date/Time:
Relinquished by: Company: Date/Time:		ite/Time:	Rece	ived b	by:			0	Company			Date/Time;		
Relinquished by: Company: Date/Time:			te/Time:	Rece	ived b	by:			0	Company			Date/Time:	
	x = Samples released to a secured, lo	cked area.					• = Sam	ples received fro	m a secured,	locked are	a			
	SAMPLERS NAME	Bryon Starl	15					MOBILE #			9230			
1	SAMPLERS SIGNATUR	My Gts	-					DATE / TIME	12/	12/19	/	250		
		1				1		1.730=	1					NS

ANALYTICAL REPORT

December 27, 2019

CDIM Engineering - San Francisco, CA

Sample Delivery Group: L1172929 Samples Received: 12/20/2019

Project Number:

Description: LRTC Industrial Stormwater

Report To: Bryan Starks

45 Polk Street

3rd Floor

San Francisco, CA 94102

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page						
Tc: Table of Contents						
Ss: Sample Summary	3					
Cn: Case Narrative	4					
Sr: Sample Results	5					
TS1-I-191218 L1172929-01	5					
TS2-I-191218 L1172929-02	6					
TS3-I-191218 L1172929-03	7					
TS4-I-191218 L1172929-04	8					
Qc: Quality Control Summary	9					
Gravimetric Analysis by Method 2540 D-2011	9					
Wet Chemistry by Method 1664A	11					
Wet Chemistry by Method 4500H+ B-2011	12					
Metals (ICPMS) by Method 200.8						
GI: Glossary of Terms						
Al: Accreditations & Locations						
Sc: Sample Chain of Custody						

PAGE:

2 of 17

			Collected by	Collected date/time	Received da	te/time
TS1-I-191218 L1172929-01 WW			Bryan Starks	12/18/19 10:00	12/20/19 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1401139	1	12/22/19 11:38	12/22/19 12:51	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:56	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS2-I-191218 L1172929-02 WW			Bryan Starks	12/18/19 10:55	12/20/19 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1401139	1	12/22/19 11:38	12/22/19 12:51	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:59	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS3-I-191218 L1172929-03 WW			Bryan Starks	12/18/19 11:15	12/20/19 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 19:02	LD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS4-I-191218 L1172929-04 WW			Bryan Starks	12/18/19 11:30	12/20/19 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN

WG1400533

WG1400655

12/21/19 21:00

12/21/19 11:24

12/21/19 21:00

12/21/19 19:05

MSP

LD

Mt. Juliet, TN

Mt. Juliet, TN

Wet Chemistry by Method 4500H+ B-2011

Metals (ICPMS) by Method 200.8

SAMPLE SUMMARY

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Cn

Ss

Brian Ford Project Manager

Buar Ford

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 10:00

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	38000		3500	25000	1	12/22/2019 12:51	WG1401139

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		763	5260	1	12/27/2019 14:15	WG1402921

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	8.14	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Sample Narrative:

L1172929-01 WG1400533: 8.14 at 19.4C

СQс Gl

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l	· <u> </u>	ug/l	ug/l		date / time	
Aluminum	1350		20.0	100	1	12/21/2019 18:56	WG1400655
Iron	9460		15.0	100	1	12/21/2019 18:56	WG1400655
Lead	205		0.260	1.00	1	12/21/2019 18:56	WG1400655
Zinc	1190		1.91	10.0	1	12/21/2019 18:56	WG1400655

Αl

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 10:55

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	790000		17500	125000	1	12/22/2019 12:51	WG1401139

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		788	5440	1	12/27/2019 14:15	WG1402921

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	7.58	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Cn

Sample Narrative:

L1172929-02 WG1400533: 7.58 at 19.3C

Metals (ICPMS) by Method 200.8

	, ,						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	144		20.0	100	1	12/21/2019 18:59	WG1400655
Iron	342		15.0	100	1	12/21/2019 18:59	WG1400655
Lead	4.63		0.260	1.00	1	12/21/2019 18:59	WG1400655
Zinc	65.6		1.91	10.0	1	12/21/2019 18:59	WG1400655

6 of 17

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 11:15

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	15900		350	2500	1	12/21/2019 21:00	WG1400986

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		763	5260	1	12/27/2019 14:15	WG1402921

Ss

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	6.88	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Sample Narrative:

L1172929-03 WG1400533: 6.88 at 19.1C

Gl

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	206		20.0	100	1	12/21/2019 19:02	WG1400655
Iron	1050		15.0	100	1	12/21/2019 19:02	WG1400655
Lead	22.3		0.260	1.00	1	12/21/2019 19:02	WG1400655
Zinc	125		1.91	10.0	1	12/21/2019 19:02	WG1400655

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 11:30

L1172929

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	11900		350	2500	1	12/21/2019 21:00	WG1400986

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		747	5150	1	12/27/2019 14:15	WG1402921

Ss

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.74	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Sample Narrative:

L1172929-04 WG1400533: 7.74 at 19.6C

Gl

Metals (ICPMS) by Method 200.8

	, ,						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	268		20.0	100	1	12/21/2019 19:05	WG1400655
Iron	336		15.0	100	1	12/21/2019 19:05	WG1400655
Lead	2.75		0.260	1.00	1	12/21/2019 19:05	WG1400655
Zinc	19.0		1.91	10.0	1	12/21/2019 19:05	WG1400655

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1172929-03,04

Method Blank (MB)

(MB) R3484942-1 12/21/	/19 21:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

(OS) L1173054-01 12/21/19 21:00 • (DUP) R3484942-3 12/21/19 21:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	800000	950000	1	17.1	P1	5

⁶Qc

(OS) L1173304-02 12/21/19 21:00 • (DUP) R3484942-4 12/21/19 21:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	9000	11600	1	25.2	<u>P1</u>	5

Laboratory Control Sample (LCS)

(LCS) R3484942-2 12/21/19 21:00

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	800000	103	85 0-115	

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1172929-01,02

Method Blank (MB)

(MB) R3485110-1 12/22/19 12:51

, , , , , , , , , , , , , , , , , , , ,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

L1172884-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1172884-01 12/22/19 12:51 • (DUP) R3485110-3 12/22/19 12:51

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	5500000	5140000	1	6.77	J3	5

L1172928-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1172928-01 12/22/19 12:51 • (DUP) R3485110-4 12/22/19 12:51

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	2180000	2120000	1	2.79		5

Laboratory Control Sample (LCS)

(LCS) R3485110-2 12/22/19 12:51

(200) 100 100 110 2 12/2	22/13 12.01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	812000	105	85.0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 1664A

L1172929-01,02,03,04

Method Blank (MB)

 (MB) R3486403-1
 12/27/19
 14:15

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 TPH - Oil & Grease
 U
 725
 5000

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3486403-2 12/2	.7/19 14:15 • (LCSD) R3486403-3	3 12/27/19 14:15							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
TPH - Oil & Grease	20000	15200	16300	76.0	81.5	64.0-132			6.98	34

[†]Cn

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1172929-01,02,03,04

L1172885-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1172885-10 12/21/19 21:00 • (DUP) R3484881-2 12/21/19 21:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
pH	6.94	6.95	1	0.144		1

Sample Narrative:

OS: 6.94 at 19.5C DUP: 6.95 at 19.6C

L1172929-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1172929-04 12/21/19 21:00 • (DLIP) R3484881-3 12/21/19 21:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	SU		%		%
рН	7.74	7.75	1	0.129		1

Sample Narrative:

OS: 7.74 at 19.6C DUP: 7.75 at 19.5C

Laboratory Control Sample (LCS)

(LCS) R3484881-1 12/21/19 21:00

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	Su	SU	%	%
На	10.0	10.0	100	99.0-101

Sample Narrative:

LCS: 10.01 at 18.6C

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1172929-01,02,03,04

Method Blank (MB)

(MB) R3485021-1 12/21/19 17:43

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

¹Cp

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3485021-2 12/21/19 17:47 • (LCSD) R3485021-3 12/21/19 17:50

,	,									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	4690	4610	93.8	92.1	85.0-115			1.78	20
Iron	5000	5010	5050	100	101	85.0-115			0.765	20
Lead	50.0	45.0	46.4	90.1	92.9	85.0-115			3.04	20
Zinc	50.0	48.1	48.8	96.3	97.5	85.0-115			1.28	20

6

⁸Al

/OC) 1172070 01	10/01/10 17.50	/MAC) DO 40E004 E	12/21/10 10.00	 (MSD) R3485021-6 	12/21/10 10.02
10 511 11/28/0-01	1/////91/53	11VI N R 34X NU / I-N	17/71/19 18:00	• IIVINI N R 34X 7U / I-N	17/71/19 18:03

L1172870-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L11/28/0-01 12/21/19 1/:53 • (MS) R3485021-5 12/21/19 18:00 • (MSD) R3485021-6 12/21/19 18:03

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	ND	4680	4800	92.8	95.1	1	70.0-130			2.37	20
Iron	5000	144	5210	5330	101	104	1	70.0-130			2.19	20
Lead	50.0	ND	51.7	47.1	103	94.2	1	70.0-130			9.23	20
Zinc	50.0	16.2	61.4	61.8	90.5	91.3	1	70.0-130			0.664	20

L1173213-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1173213-01 12/21/19 18:06 • (MS) R3485021-7 12/21/19 18:10 • (MSD) R3485021-8 12/21/19 18:13

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	ND	4660	4630	93.2	92.7	1	70.0-130			0.564	20
Iron	5000	ND	5170	5210	103	103	1	70.0-130			0.644	20
Lead	50.0	ND	47.1	46.5	94.2	93.0	1	70.0-130			1.22	20
Zinc	50.0	12.9	60.1	58.8	94.3	91.8	1	70.0-130			2.03	20

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDI	Mothed Detection Limit
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

Qu anner	Description
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1172929 12/27/19 15:53 15 of 17

CHAIN OF CUSTODY RECORD

LABORATO	RY:	INSTRUCTIONS FO	OR LAB PER	SONNEL:		ur f	Analy	ysis Tu	rnaroud 7	īme .	X Stand	ard c	Other						
ESC Labora 12065 Lebar (615) 773-97 Brian Ford	non Road, Mt. Juliet, TN 37122	Please send analytic results, electronic deliverables et, TN 37122 and the original chain-of-custody form to: bas@cdimengineering.com, mec@cdimengineering.com sab@cdimengineering.com Please send analytic results, electronic deliverables GeoTracker EDF required?					Specify analytic/prep method and detection limit in report. Notify us of any anomalous peaks in GC or other scans. Call immediately with any questions or problems.												
CDIM CONT	TACT:	Project Manager:	Bryan Starks				КСРО	711 3011	results to			YSIS RE			- 4		1		COC Number:
CDIM Engin		Phone Number	415-498-053								T			T					
45 Polk Stre		Sampled by:					î î	EM)											
	co, California 94102	Sample date(s):				13	540	SGT-HEM)						1/3/	4				Page_ / of _ l
ALC: NO.	NFORMATION	Campio date(o).					(SM 2540D)	SG.	72								12.5		1 490
							ds (S	64A	Pb, Z										
Job Name:	LRTC Industrial Stormwater						Solids	Grease (EPA 1664A	AS)			12.11							SDG number:
Job#:						HB)	ded	(EP	AI. A		71.1			1					
Address	402 Wright Avenue, Richmond CA 94804					1500	ben	ase	tals-										1172929
Address:	T 402 Wright Avenue, Richmond CA 94604		Commite	I Camala I	44 - 6	SM 4	Sus	Gre	Metals- Al, Fe, R 200.8 ICP-MS)							20.0			
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	PH (SM 4500HB	Total Suspended	OII &	Tota (EPA										Sample Specific Notes:
	TS1-1-191218	12/18/19	1000	W	4	X	X	X	X								100		-01
	TS2-I-191218		1055	W	4	X	Х	Х	X									4 .	02
	TS3-1-191218		1115	W	4	Х	X	X	X	-1							1		03
4.00	TS4-1-19 1218	<u>_</u>	1130	W	4	X	X	Х	Х										or
			2 100						Za.										
				Je de la			1.7		15			- 2				77 7 46			
										T - 6			34						
				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		7		12				122							
											17.5				348				
14.0						-			7 7							44			
AMA				Field Filte	ered (X):				6 .		J.		P. K.						
Presen	vation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ;	4=HNO ₃ ; 5=NaOH; 6= Ot	ner			1	1	1, 3	1, 4										
Special Ins	structions/QC Requirements & Co	mments: Level II Re	eport. Repo	rt with repo	orting lim	it an			detecti				d repo				ed abov		
Relinquished	by for	Company:		Date/Time:	125	Rece	ived b	у: -	12	,	T.		0	Compa	any:			Da	Tiong 0930
Relinquished	by:	Company:		Date/Time:		Rece	ived b	y:					0	Compa		1		Da	ate/Time;
Relinquished	by:	Company:		Date/Time:		Rece	ived b	y.					0	Compa	any:	Ā		Da	ate/Time:
	x = Samples released to a secured, lo	ocked area.	1.4		Ġ.	9.0	-	• = S	amples r	eceived	from a s	ecured, lo	cked ar	ea					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	SAMPLERS NAME	Byan Ste	uls						M	OBILE#		8	08	25	6	9230	S		
	SAMPLERS SIGNATUR	In la	7						Di	ATE / TIM	ΛE		118/		10	9230			

Pace Analytical National Center for Testing & Innovation Cooler Receipt Form 1172929 Client: CDIENGSER Cooler Received/Opened On: 12 / 70/19 Temperature: 1 Received By: Tanner Windham Signature: NP Yes No **Receipt Check List** COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent? If Applicable VOA Zero headspace? Preservation Correct / Checked?

ANALYTICAL REPORT

December 30, 2019

CDIM Engineering - San Francisco, CA

Sample Delivery Group: L1172918

Samples Received: 12/20/2019

Project Number:

Description: LRTC Industrial Stormwater

Report To: Bryan Starks

45 Polk Street

3rd Floor

San Francisco, CA 94102

Entire Report Reviewed By:

Buar Ford

Brian Ford

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

16

Cp: Cover Page	•			
Tc: Table of Contents				
Ss: Sample Summary	3			
Cn: Case Narrative	4			
Sr: Sample Results	5			
TS1-E-191218 L1172918-01	5			
TS2-E-191218 L1172918-02	6			
TS3-E-191218 L1172918-03	7			
TS4-E-191218 L1172918-04	8			
TSX-E-191218 L1172918-05	9			
Qc: Quality Control Summary	10			
Gravimetric Analysis by Method 2540 D-2011	10			
Wet Chemistry by Method 1664A	1′			
Wet Chemistry by Method 4500H+ B-2011	12			
Metals (ICPMS) by Method 200.8	13			
GI: Glossary of Terms	14			
Al: Accreditations & Locations	15			

Sc: Sample Chain of Custody

PAGE:

SAMPLE SUMMARY

Collected by

Bryan Starks

ЛМАRY	ONE LAB. NATIONW
VIIVIARI	OIL E.B. IV (IIOIV

12/18/19 10:36

Collected date/time Received date/time

12/20/19 09:30

ONE	IAR	NATIONWIDE.
OINE	LAD.	NATIONWIDE.

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:33	LD	Mt. Juliet, TN

	Collected by	Collected date/time	Received date/time
TS2-E-191218 L1172918-02 WW	Bryan Starks	12/18/19 10:49	12/20/19 09:30

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:36	LD	Mt. Juliet, TN

Collected by Collected date/time Received date/time Bryan Starks 12/18/19 11:26 12/20/19 09:30 TS3-E-191218 L1172918-03 WW

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:39	LD	Mt. Juliet, TN

Collected by Collected date/time Received date/time Bryan Starks 12/18/19 11:25 12/20/19 09:30 TS4-E-191218 L1172918-04 WW

Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	MBP	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:42	LD	Mt. Juliet, TN

Collected by Collected date/time Received date/time Bryan Starks 12/18/19 11:27 12/20/19 09:30 TSX-E-191218 L1172918-05 WW

Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 D-2011	WG1400986	1	12/21/19 16:43	12/21/19 21:00	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1402921	1	12/26/19 15:22	12/27/19 14:15	AMG	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1400533	1	12/21/19 21:00	12/21/19 21:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1400655	1	12/21/19 11:24	12/21/19 18:46	LD	Mt. Juliet, TN

CDIM Engineering - San Francisco, CA

TS1-E-191218 L1172918-01 WW

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

PAGE:

4 of 18

Buar Ford

Sample Narrative:

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 10:36

Gravimetric Analysis by Method 2540 D-2011

L1172918-01 WG1400986: Reporting limit determined by filtrate volume.

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	U		357	2550	1	12/21/2019 21:00	WG1400986

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		780	5380	1	12/27/2019 14:15	WG1402921

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.41	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Sample Narrative:

L1172918-01 WG1400533: 7.41 at 19C

ΆΙ Sc

Gl

Metals (ICPMS) by Method 200.8

	, ,						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/21/2019 18:33	WG1400655
Iron	U		15.0	100	1	12/21/2019 18:33	WG1400655
Lead	0.602	<u>J</u>	0.260	1.00	1	12/21/2019 18:33	WG1400655
7inc	31.2		1.91	10.0	1	12/21/2019 18:33	WG1400655

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 10:49

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	4500		350	2500	1	12/21/2019 21:00	WG1400986

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		763	5260	1	12/27/2019 14:15	WG1402921

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
pH	7.42	T8	1	12/21/2019 21:00	WG1400533

СQс

Sample Narrative:

L1172918-02 WG1400533: 7.42 at 19.7C

Gl

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/21/2019 18:36	WG1400655
Iron	20.4	<u>J</u>	15.0	100	1	12/21/2019 18:36	WG1400655
Lead	0.568	<u>J</u>	0.260	1.00	1	12/21/2019 18:36	WG1400655
Zinc	24.8		1.91	10.0	1	12/21/2019 18:36	WG1400655

ΆΙ

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 11:26

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	U		357	2550	1	12/21/2019 21:00	WG1400986

L1172918-03 WG1400986: Reporting limit determined by filtrate volume.

Ss

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		732	5050	1	12/27/2019 14:15	WG1402921

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	6.86	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Sample Narrative:

L1172918-03 WG1400533: 6.86 at 19.4C

Sc

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/21/2019 18:39	WG1400655
Iron	59.6	<u>J</u>	15.0	100	1	12/21/2019 18:39	WG1400655
Lead	1.55		0.260	1.00	1	12/21/2019 18:39	WG1400655
Zinc	54.9		1.91	10.0	1	12/21/2019 18:39	WG1400655

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 11:25

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	U		350	2500	1	12/21/2019 21:00	WG1400986

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		780	5380	1	12/27/2019 14:15	WG1402921

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.61	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Cn

Sample Narrative:

L1172918-04 WG1400533: 7.61 at 19.5C

СQс Gl

Metals (ICPMS) by Method 200.8

(, , ,										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	ug/l		ug/l	ug/l		date / time				
Aluminum	U		20.0	100	1	12/21/2019 18:42	WG1400655			
Iron	U		15.0	100	1	12/21/2019 18:42	WG1400655			
Lead	0.426	<u>J</u>	0.260	1.00	1	12/21/2019 18:42	WG1400655			
Zinc	19.3		1.91	10.0	1	12/21/2019 18:42	WG1400655			

ONE LAB. NATIONWIDE.

Collected date/time: 12/18/19 11:27

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	U		350	2500	1	12/21/2019 21:00	WG1400986

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		780	5380	1	12/27/2019 14:15	WG1402921

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
рН	7.67	<u>T8</u>	1	12/21/2019 21:00	WG1400533

Cn

Sample Narrative:

L1172918-05 WG1400533: 7.67 at 19.4C

СQс

Gl

Metals (ICPMS) by Method 200.8

	, ,						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	U		20.0	100	1	12/21/2019 18:46	WG1400655
Iron	U		15.0	100	1	12/21/2019 18:46	WG1400655
Lead	0.347	J	0.260	1.00	1	12/21/2019 18:46	WG1400655
Zinc	17.3		1.91	10.0	1	12/21/2019 18:46	WG1400655

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

U

L1172918-01,02,03,04,05

Method Blank (MB)

Suspended Solids

(MB) R3484942-1 12/21/19	9 21:00			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l

(OS) L1173054-01 12/21/19 21:00 • (DUP) R3484942-3 12/21/19 21:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	800000	950000	1	17.1	P1	5

350

2500

(OS) L1173304-02 12/21/19 21:00 • (DUP) R3484942-4 12/21/19 21:00

	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	9000	11600	1	25.2	P1	5

Laboratory Control Sample (LCS)

(LCS) R3484942-2 12/21/19 21:00

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	800000	103	85 0-115	

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 1664A

L1172918-01,02,03,04,05

Method Blank (MB)

 (MB) R3486403-1
 12/27/19
 14:15

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 TPH - Oil & Grease
 U
 725
 5000

(LCS) R3486403-2 12/2	(LCS) R3486403-2 12/27/19 14:15 • (LCSD) R3486403-3 12/27/19 14:15											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%		
TPH - Oil & Grease	20000	15200	16300	76.0	81.5	64.0-132			6.98	34		

[†]Cn

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1172918-01,02,03,04,05

L1172885-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1172885-10 12/21/19 21:00 • (DUP) R3484881-2 12/21/19 21:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
pH	6.94	6.95	1	0.144		1

Sample Narrative:

OS: 6.94 at 19.5C DUP: 6.95 at 19.6C

L1172929-04 Original Sample (OS) • Duplicate (DUP)

(OS) | 1172929-04 12/21/19 21:00 • (DLIP) R3484881-3 12/21/19 21:00

(OS) E1172323-04 12/21/13				DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	SU	SU		%		%		
pH	7.74	7.75	1	0.129		1		

Sample Narrative:

OS: 7.74 at 19.6C DUP: 7.75 at 19.5C

Laboratory Control Sample (LCS)

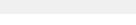
(LCS) R3484881-1 12/21/19 21:00

,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits
Analyte	Su	SU	%	%
На	10.0	10.0	100	99.0-101

Sample Narrative:

LCS: 10.01 at 18.6C

ONE LAB. NATIONWIDE.


Metals (ICPMS) by Method 200.8

L1172918-01,02,03,04,05

Method Blank (MB)

(MB) R3485021-1 12/21/19 17:43

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3485021-2 12/21/19 17:47 • (LCSD) R3485021-3 12/21/19 17:50

()		,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	4690	4610	93.8	92.1	85.0-115			1.78	20
Iron	5000	5010	5050	100	101	85.0-115			0.765	20
Lead	50.0	45.0	46.4	90.1	92.9	85.0-115			3.04	20
Zinc	50.0	48.1	48.8	96.3	97.5	85.0-115			1.28	20

L1172870-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1172870-01 12/21/19 17:53 • (MS) R3485021-5 12/21/19 18:00 • (MSD) R3485021-6 12/21/19 18:03

, ,	, ,		,	,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	ND	4680	4800	92.8	95.1	1	70.0-130			2.37	20
Iron	5000	144	5210	5330	101	104	1	70.0-130			2.19	20
Lead	50.0	ND	51.7	47.1	103	94.2	1	70.0-130			9.23	20
Zinc	50.0	16.2	61.4	61.8	90.5	91.3	1	70.0-130			0.664	20

L1173213-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1173213-01 12/21/19 18:06 • (MS) P3485021-7 12/21/19 18:10 • (MSD) P3485021-8 12/21/19 18:13

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	ND	4660	4630	93.2	92.7	1	70.0-130			0.564	20
Iron	5000	ND	5170	5210	103	103	1	70.0-130			0.644	20
Lead	50.0	ND	47.1	46.5	94.2	93.0	1	70.0-130			1.22	20
Zinc	50.0	12.9	60.1	58.8	94.3	91.8	1	70.0-130			2.03	20

Ss

Cn

Sr

Qc

GI

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	2 Definitions
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
-----------	-------------

J	The identification of the analyte is acceptable; the reported value is an estimate.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1172918 12/30/19 09:55 14 of 18

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

CHAIN OF CUSTODY RECORD

LABORATO	ORY:	INSTRUCTIONS FO	R LAB PER	SONNEL:			Analy	sis Tu	rnaroud '	Time	X Stan	dard	<u> </u>	her	1		-				1
ESC Labora 12065 Leba (615) 773-9	atory non Road, Mt. Juliet, TN 37122	Please send analytic and the original chain bas@cdimengineering	n-of-custody .com, mec@c	form to:			LOCU	JS ED	D require ults to: results to	ed? o	X	X No MDL	(No	□ dry w	eight	No	ify us of	f any an	nomalo	thod and detection limit in us peaks in GC or other y questions or problems.	
Brian Ford CDIM CON	TACT:	sab@cdimengineering Project Manager:	Bryan Starks	S			Керо	II SOII	results it	,		LYSIS							J.	COC Number	100
CDIM Engir		Phone Number	415-498-053														T				
	eet, 3rd Floor	Sampled by:					(QC	EM									4				
	sco, California 94102	Sample date(s):					254(SGT-HEM)				1								Page_ 1 _ of _	
	INFORMATION		4.4				SM		Zu				-						1		
	LRTC Industrial Stormwater					(1	d Solids (SM 2540D)	(EPA 1664A	Fe, Pb, MS)						7					SDG number	
Job #: Address:	402 Wright Avenue, Richmond CA 94804					M 4500HB)	Suspended	Grease (El	Metals- Al, 200.8 ICP-		100 m									1172-916	
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	pH (SM	Total 8	OII & C	Total ((EPA:							1				Sample Specific N	lotes:
	TS1-E-191218	12/18/19	1036	W	4	X	X	Х	X				697		A.		Fig. 1				-01
	TS2-E-191218		1649	W	4	X	X	X	X												04
Ĺ	TS3-E-191218		1126		4	Х	Х	X	Х		A LE					100					03
	TS4-E-191218		1125		ď	X	X	Х	Х										2		04
	TSX-E-191218	业	1127	W	4	X	X	Х	Х		, A		1							Perform MS/MSD using addit provided	onal volume
							4					15.0		1							
	A STATE OF THE STA			200	1 1							160									
				111111111111111111111111111111111111111				/84						16							
												1.					7				
							26										1		34		
				Field Fil	tered (X):		7		200			187									
	rvation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ;			-t !tl	and in section	1	1	1000000	1, 4	ion liv	nit An	aluza	and r	nort	anly th	o mot	ale lie	tod ab	l l		
Special Ir	structions/QC Requirements & Co	mments: Level II R	эрогі. керс	ort with rep	orung iin	iit aii								sport	01	1. 1=	6,2	A.	S	•	
						1-		RAD	SCR	EEN:	< 0.5	mR/h)F							In a man	
Relinquishe	1	Company:		Date/Time:	1215		eiveu i	1	12					0	Compan	e					0420
Relinquishe	d-by-	Company:		Date/Time:		Reci	eived t	oy: (0	Compar	ıy:		124		Date/Time:	
Relinquishe	d by:	Company:		Date/Time:		Rece	eived t	oy:						0	Compar	ıy:			7	Date/Time:	
	x = Samples released to a secured, I	ocked area.						• = 5	Samples	receive	d from a	secure	d, locke					v 4			
	SAMPLERS NAME	Bryan 5	tales	V-1					N	OBILE	#	2	808	25	6	055		¥ <u>-</u>			
	SAMPLERS SIGNATUR		do	4			1			ATE / T	IME		-/18	200000000000000000000000000000000000000	UNIO 22 CHI 1/2 PAR	121	DESCRIPTION OF LOWIS		Y		
				and the second			-			-				1	1.11			Yur d			Tarley or

Pace Analytical Nation	al Center fo	or Testing & Innov	ation	
Cool	er Receipt	Form		
Client:	* * * * * * * * * * * * * * * * * * *	The state of the s		
Cooler Received/Opened On:	12/10/19	Temperature: ,}		T-TT
Received By: Tanner Windham		and the second s	4 17 3 5	
Signature:				
Receipt Check List		NP	Yes	No
COC Seal Present / Intact?				
COC Signed / Accurate?	187 7 TE 15			7
Bottles arrive intact?		"三年"		11
Correct bottles used?			BE ST	
Sufficient volume sent?				
If Applicable				Walson Brown
VOA Zero headspace?		## 11-1		1711
Preservation Correct / Checked?	100-100			

Evaluated by:Kelsey S	
Date:12/20	
Client:CDIENGSFCA	
Login #: 11172918	LUBIII H. LALVOLO

Non-Conformance (check applicable items)

S	Non-Como mance (check apprease remain	The state of the s	
S	Sample Integrity	Chain of Custody Clarification	
T D	Parameter(s) past holding time	Login Clarification Needed	If Broken Container:
	Temperature not in range	Chain of custody is incomplete	Insufficient packing material around container
1 1	Improper container type	Please specify Metals requested.	Insufficient packing material inside cooler
1	pH not in range.	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courier
1 -	Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
01	Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
	Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
1	Broken container	Client did not "X" analysis.	Received by:
	Broken container:	Chain of Custody is missing	Date/Time:
0,	Sufficient sample remains		Temp./Cont. Rec./pH:
			Carrier:
-			Tracking#
1		The second secon	

Login Comments: No additional volume received for TSX-E-191218

Client informed by:	Call	Email	Voice Mail	Date:	Time:
distriction of					と一方には人が大学にいているとうない。 一方には、一方には、一方には、
TSR Initials:bif	Client Conta	ict:			
1010101010101					

Login Instructions;

Proceed without MS/MSD study/comment

ANALYTICAL REPORT

January 27, 2020

CDIM Engineering - San Francisco, CA

Sample Delivery Group: L1181012

Samples Received: 01/18/2020

Project Number:

Description: LRTC Industrial Stormwater

402 WRIGHT AVE RICHMOND CA Site:

Report To: Bryan Starks

45 Polk Street

3rd Floor

San Francisco, CA 94102

Entire Report Reviewed By:

Jason Romer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1		
Tc: Table of Contents	2		
Ss: Sample Summary	3		
Cn: Case Narrative	4		
Sr: Sample Results	5		
TS1-I-200116 L1181012-01	5		
TS2-I-200116 L1181012-02	6		
TS3-I-200116 L1181012-03	7		
TS4-I-200116 L1181012-04	8		
Qc: Quality Control Summary	9		
Gravimetric Analysis by Method 2540 D-2011	9		
Wet Chemistry by Method 1664A	11		
Wet Chemistry by Method 4500H+ B-2011			
Metals (ICPMS) by Method 200.8			
GI: Glossary of Terms			
Al: Accreditations & Locations	18		
Sc: Sample Chain of Custody	19		

			Collected by	Collected date/time	Received da	te/time
TS1-I-200116 L1181012-01 WW			Bryan Starks	01/16/20 10:03	01/18/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1413702	1	01/19/20 08:35	01/19/20 09:56	TH	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1414938	1	01/21/20 18:30	01/22/20 09:59	AMG	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1414224	1	01/21/20 09:01	01/21/20 09:01	EEM	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1413726	1	01/24/20 08:17	01/24/20 16:49	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS2-I-200116 L1181012-02 WW			Bryan Starks	01/16/20 10:26	01/18/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1415496	1	01/22/20 19:55	01/22/20 21:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1414938	1	01/21/20 18:30	01/22/20 09:59	AMG	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1415340	1	01/23/20 12:00	01/23/20 12:00	MSP	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1414761	1	01/23/20 07:24	01/23/20 15:15	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS3-I-200116 L1181012-03 WW			Bryan Starks	01/16/20 10:46	01/18/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1415496	1	01/22/20 19:55	01/22/20 21:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1414938	1	01/21/20 18:30	01/22/20 09:59	AMG	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1414860	1	01/22/20 14:00	01/22/20 14:00	JIC	Mt. Juliet, TN
Metals (ICPMS) by Method 200.8	WG1414761	1	01/23/20 07:24	01/23/20 15:19	JPD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TS4-I-200116 L1181012-04 WW			Bryan Starks	01/16/20 10:50	01/18/20 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 D-2011	WG1415496	1	01/22/20 19:55	01/22/20 21:07	MMF	Mt. Juliet, TN
Wet Chemistry by Method 1664A	WG1414938	1	01/21/20 18:30	01/22/20 09:59	AMG	Mt. Juliet, TN
Wet Chemistry by Method 4500H+ B-2011	WG1414860	1	01/22/20 14:00	01/22/20 14:00	JIC	Mt. Juliet, TN

WG1414761

SAMPLE SUMMARY

01/23/20 07:24

01/23/20 15:22

JPD

Mt. Juliet, TN

Metals (ICPMS) by Method 200.8

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

PAGE:

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:03

Gravimetric Analysis by Method 2540 D-2011											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch				
Analyte	ug/l		ug/l	ug/l		date / time					
Suspended Solids	89000		3500	25000	1	01/19/2020 09:56	WG1413702				

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		780	5380	1	01/22/2020 09:59	WG1414938

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
рН	7.44	<u>T8</u>	1	01/21/2020 09:01	WG1414224

Sample Narrative:

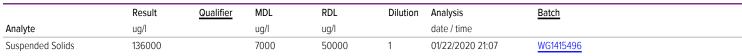
L1181012-01 WG1414224: 7.44 at 18.2C

Gl

Sc

PAGE:

5 of 21


Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	1840		20.0	100	1	01/24/2020 16:49	WG1413726
Iron	3950		15.0	100	1	01/24/2020 16:49	WG1413726
Lead	37.2		0.260	1.00	1	01/24/2020 16:49	WG1413726
Zinc	313		1.91	10.0	1	01/24/2020 16:49	WG1413726

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:26

Gravimetric Analysis by Method 2540 D-2011

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		788	5440	1	01/22/2020 09:59	WG1414938

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.36	<u>T8</u>	1	01/23/2020 12:00	WG1415340

Cn

Sample Narrative:

L1181012-02 WG1415340: 7.36 at 19C

СQс

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	685		20.0	100	1	01/23/2020 15:15	WG1414761
Iron	2050		15.0	100	1	01/23/2020 15:15	WG1414761
Lead	19.0		0.260	1.00	1	01/23/2020 15:15	WG1414761
Zinc	149		1.91	10.0	1	01/23/2020 15:15	WG1414761

ΆΙ

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:46

L1181012

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	11000		350	2500	1	01/22/2020 21:07	WG1415496

²Tc

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		815	5620	1	01/22/2020 09:59	WG1414938

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.73	<u>T8</u>	1	01/22/2020 14:00	WG1414860

Cn

Sample Narrative:

L1181012-03 WG1414860: 7.73 at 17.8C

Qc 7GI

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	337		20.0	100	1	01/23/2020 15:19	WG1414761
Iron	762		15.0	100	1	01/23/2020 15:19	WG1414761
Lead	45.3		0.260	1.00	1	01/23/2020 15:19	WG1414761
Zinc	91.6		1.91	10.0	1	01/23/2020 15:19	WG1414761

CDIM Engineering - San Francisco, CA

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:50

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	34800		700	5000	1	01/22/2020 21:07	WG1415496

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		788	5440	1	01/22/2020 09:59	WG1414938

Ss

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.63	<u>T8</u>	1	01/22/2020 14:00	WG1414860

Sample Narrative:

L1181012-04 WG1414860: 7.63 at 17.8C

СQс

Metals (ICPMS) by Method 200.8

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	871		20.0	100	1	01/23/2020 15:22	WG1414761
Iron	1500		15.0	100	1	01/23/2020 15:22	WG1414761
Lead	10.0		0.260	1.00	1	01/23/2020 15:22	WG1414761
Zinc	56.1		1.91	10.0	1	01/23/2020 15:22	WG1414761

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1181012-01

Method Blank (MB)

(MB) R3492436-1 01/19/20	09:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

L1180677-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1180677-01 01/19/20 09:56 • (DUP) R3492436-3 01/19/20 09:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	85000	87000	1	2.33		5

Cn

⁶Qc

L1180906-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1180906-05 01/19/20 09:56 • (DUP) R3492436-4 01/19/20 09:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	46000	16000	1	96.8	<u>J P1</u>	5

Laboratory Control Sample (LCS)

(LCS) R3492436-2 01/19/20 09:56

(/					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	844000	109	85.0-115	

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1181012-02,03,04

Method Blank (MB)

 (MB) R3493381-1
 O1/22/20
 21:07

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 Suspended Solids
 U
 350
 2500

(OS) L1179827-01 01/22/20 21:07 • (DUP) R3493381-3 01/22/20 21:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	175000	178000	1	1.70		5

⁶Qc

(OS) L1181086-02 01/22/20 21:07 • (DUP) R3493381-4 01/22/20 21:07

, ,	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	28200	30200	1	6.85	<u>J3</u>	5

Laboratory Control Sample (LCS)

ACCOUNT:

CDIM Engineering - San Francisco, CA

(LCS) R3493381-2 01/22/20 21:07

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	756000	97.8	85.0-115	

SDG:

L1181012

DATE/TIME:

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 1664A

L1181012-01,02,03,04

Method Blank (MB)

TPH - Oil & Grease

(MB) R3492930-1 01/22/20 09:59

MB Result MB Qualifier MB MDL M
Analyte ug/l ug/l ug/l u

U

MDL	MB RDL
	ug/l
	5000

The second second	0 1 10 1	(1 00)	The second second	<u> </u>	6 1 5	11. 1. //	000
Laboratory	/ Control Sample	(LCS)	 Laboratory 	/ Control	Sample Du	piicate (l	_CSD)

725

(LCS) R3492930-2	01/22/20	09.59 •	(LCSD)	R3492930-3	01/22/20 09:59
(200)	0 17 == 7 = 0	00.00	(-00)		0.722,20 00.00

(LC3) K3432330-2 01/2	2/20 09.59 • (LC	JD) NJ43233	0-3 01/22/200	19.59						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
TPH - Oil & Grease	20000	20900	19400	105	97 N	64 0-132			7 44	34

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1181012-01

L1180298-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1180298-01 01/21/20 09:01 • (DUP) R3492533-2 01/21/20 09:01

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	Su		%		%
pH	7.48	7.48	1	0.000		1

Ss

Sample Narrative:

OS: 7.48 at 18.3C DUP: 7.48 at 18.3C

L1181025-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1181025-03 01/21/20 09:01 • (DUP) R3492533-3 01/21/20 09:01

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	Su	SU		%		%
рН	6.81	6.82	1	0.147		1

Sample Narrative:

OS: 6.81 at 18.4C

DUP: 6.82 at 18.3C

Laboratory Control Sample (LCS)

(LCS) R3492533-1 01/21/20 09:01

Sample Narrative:

LCS: 10.03 at 16.9C

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1181012-03,04

L1181012-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1181012-03 01/22/20 14:00 • (DUP) R3493150-2 01/22/20 14:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.73	7.73	1	0.000		1

Ss

Sample Narrative:

OS: 7.73 at 17.8C DUP: 7.73 at 17.5C

L1181513-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1181513-02 01/22/20 14:00 • (DUP) R3493150-3 01/22/20 14:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	6.81	6.82	1	0.147		1

Sample Narrative: OS: 6.81 at 16C

DUP: 6.82 at 18.4C

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3493150-1 01/22/20 14:00

Sample Narrative:

LCS: 10.01 at 17.8C

01/27/20 13:33

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1181012-02

L1177016-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1177016-01 01/23/20 12:00 • (DUP) R3493434-2 01/23/20 12:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
рН	8.04	8.05	1	0.124		1

Sample Narrative:

OS: 8.04 at 18.7C DUP: 8.05 at 18.7C

Ss

L1181485-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1181485-02 01/23/20 12:00 • (DUP) R3493434-3 01/23/20 12:00

Sample Narrative:

OS: 6.58 at 20.9C DUP: 6.53 at 19.7C

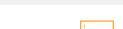
Laboratory Control Sample (LCS)

(LCS) R3493434-1 01/23/20 12:00

Sample Narrative:

LCS: 9.99 at 18.4C

01/27/20 13:33


ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

Method Blank (MB)

(MB) R3493931-1 01/24/20 15:38	(MB) R3493931-1	01/24/20 15:38
--------------------------------	-----------------	----------------

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

(LCS) R3493931-2 01/24/20 15:41 • (LCSD) R3493931-3 01/24/20 15:45

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	5120	5200	102	104	85.0-115			1.66	20
Iron	5000	5490	5430	110	109	85.0-115			1.10	20
Lead	50.0	46.4	50.1	92.8	100	85.0-115			7.72	20
Zinc	50.0	51.4	53.0	103	106	85.0-115			3.04	20

L1180944-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1180944-04 01/24/20 15:48 • (MS) R3493931-5 01/24/20 15:55 • (MSD) R3493931-6 01/24/20 15:59

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	ND	5160	5040	103	100	1	70.0-130			2.44	20
Iron	5000	ND	5510	5200	109	103	1	70.0-130			5.73	20
Lead	50.0	ND	48.3	49.9	96.5	99.7	1	70.0-130			3.25	20
Zinc	50.0	20.2	69.8	70.0	99.1	99.6	1	70.0-130			0.395	20

15 of 21

DATE/TIME:

01/27/20 13:33

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1181012-02,03,04

Method Blank (MB)

(MB) R3493530-1 01/23/20 14:35 MB RDL MB Result MB Qualifier MB MDL Analyte ug/l ug/l ug/l Aluminum U 20.0 100 15.0 100 Iron Lead U 0.260 1.00 U 1.91 10.0 Zinc

⁴Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3493530-2 01/23/20 14:38 • (LCSD) R3493530-3 01/23/20 14:41

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	5080	5080	102	102	85.0-115			0.0645	20
Iron	5000	5280	5310	106	106	85.0-115			0.452	20
Lead	50.0	50.8	52.6	102	105	85.0-115			3.49	20
Zinc	50.0	53.2	54.4	106	109	85.0-115			2.38	20

[°]Al

L1181018-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

 $(OS) \, L1181018-05 \ \ \, 01/23/20 \, \, 14:45 \, \bullet \, (MS) \, R3493530-5 \ \ \, 01/23/20 \, \, 14:51 \, \bullet \, (MSD) \, R3493530-6 \ \ \, 01/23/20 \, \, 14:54 \, \bullet \, (MSD) \, R3493530-6 \, \, (MSD) \, R3493530-6 \,$

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	44.7	4980	4940	98.7	98.0	1	70.0-130			0.716	20
Iron	5000	16.6	5340	5260	107	105	1	70.0-130			1.65	20
Lead	50.0	0.471	52.2	51.5	104	102	1	70.0-130			1.41	20
Zinc	50.0	6.81	59.8	59.7	106	106	1	70.0-130			0.179	20

Sc

L1181832-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1181832-01 01/23/20 14:58 • (MS) R3493530-7 01/23/20 15:01 • (MSD) R3493530-8 01/23/20 15:04

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	155	5400	5130	105	99.6	1	70.0-130			5.00	20
Iron	5000	161	5580	5470	108	106	1	70.0-130			2.08	20
Lead	50.0	U	54.5	51.3	109	103	1	70.0-130			6.02	20
Zinc	50.0	9.09	62.5	61.4	107	105	1	70.0-130			1.81	20

GLOSSARY OF TERMS

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbic viations and	
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

cription

J	The identification of the analyte is acceptable; the reported value is an estimate.	
J3	The associated batch QC was outside the established quality control range for precision.	
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.	
T8	Sample(s) received past/too close to holding time expiration.	

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: L1181012 01/27/20 13:33 18 of 21

S	Ņ	r	ħ	а	н
	962				
	æ		и	и	
ø	а	\mathbb{R}	۲,		8

CHAIN OF CUSTODY RECORD

D197

ABORATOR SC Laborate 2065 Leban		Please send analytic and the original chain	esults, electrof-custody for	onic delivera orm to:			GeoTra	acker E	aroud Tim DF required? required? ts to:	ed? □ Yes	X No				Motify	us of ar	v anomalou	nod and detection is peaks in GC or questions or prot	other scans.
315) 773-97		bas@cdimengineering.csab@cdimengineering.c	om	mengineening	2.00111				sults to:	□ wet	weight (to	s REQI	dry we	eignt		-	uh -	COC N	ımber:
CDIM CONTACTOR ENGINE	ering	Project Manager: Phone Number Sampled by: Sample date(s):	Bryan Starks 415-498-0535				A 2540D)	SGT-HEM)	7									Page	of
	IFORMATION						Is (SI	64A	Pb, 4									SDG	number:
	LRTC Industrial Stormwater					4500HB)	Total Suspended Solids (SM 2540D)	Grease (EPA 1664A	Metals- Al, Fe, F 200.8 ICP-MS)									LII4	31612
Address:	402 Wright Avenue, Richmond CA 94804	1320 2 10	Comple	Sample	# of	pH (SM 4	al Sus	& Gre	al Mel									Sample S	pecific Notes:
Lab ID	Sample Identification	Sample Date	Sample Time	Matrix	Cont.	TA STATE		200	Total (EPA		200				4.5		2		
	TS1-I-2001/6	1/16/20	1003	W	4	X		X	X										
	TS2-1- 7061 6		1026	W		X	+	X	X										
	TS3-1- 2001 16		1046	W		X		X	X										
	TS4-1- 200116	J.	1050	W	V	X	X	X	X									Jan San	
															1,2,0%				
		a																	
										4									
	The second second				Allerda.		+			4.0									
				Field F	iltered (X):													
		. 4-UNO · 5=NaOH: 6= 0	ther		2000000		1 1	1, 3	3 1, 4		-			200	1	atola lie	stod abov	10	
Special In	rvation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ structions/QC Requirements & C	omments: Level II F	Report. Rep	ort with re	porting	limit	and n	netho	d detec	tion lin	nit. Ana	lyze ar	id repoi	rt only	the inc	etais ii	0.076		
25											,			48	0021	000	-101	ID-to/Time:	
Relinquished	d by:	Company:	n 1	Date/Tim	e: Zo 17		eceive	d by:	llan	141	N	M	0		PA	CE		1/18/2 Date/Time:	020 900
Relinquishe	fry go	Company:		Date/Tim		R	Receive	ed by:	VV	7			0		npany:			Date/Time:	
Relinquishe	T T T T T T T T T T T T T T T T T T T	Company:		Date/Tim	ne:	F	Receive	ed by:	100				0	Cor	npany:				
	x = Samples released to a secured	locked area.	5 M 3 - 2 3	und Vale			7.1	•	= Sample	s receive	ed from a	secured	, locked a	rea	-/	272			A STATE OF THE STA
	SAMPLERS NAME	Bryan St	. dia	100	Contract Contract		×			MOBILE	#	1	808	2		00	3		

Pace Analytical National Cooler	Center for Receipt Fo			
Client:	CDIEN	SSFCA	L118	1012
Company of the Compan	18/20	Temperature:	0.5	
Received By: Hailey Melson				
Signature: Manual // /				
CONTRACTOR OF THE STATE OF THE			I BOOK VALUE OF	
Receipt Check List		NP	Yes	No
COC Seal Present / Intact?				
COC Signed / Accurate?				1825 A.P. 14-
Bottles arrive intact?	or a support	(4)		
Correct bottles used?			/	
Sufficient volume sent?			1	
If Applicable				
VOA Zero headspace?			71	
Preservation Correct / Checked?	没有我们的		1	

Evaluated by: Jeremy Date: 1/18/20 Client: CDIENGSFCA Login #: L1181012

Non-Conformance (check applicable items)

4	non-como mance (check applicable terms)		and thems)	
	Sample Integrity		Chain of Custody Clarification	
	Parameter(s) past holding time	×	Login Clarification Needed	If Broken Container:
	Temperature not in		Chain of metody is incomplete	Incufficient nacting material around container
	Improper container type		Please specify Metals requested.	Insufficient packing material inside cooler
	pH not in range.		Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Couri
	Insufficient sample volume.		Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.		Sample ids on containers do not match ids on coc	Container lid not intact
	Vials received with headspace.		Trip Blank not received.	If no Chain of Custody:
	Broken container	11	Client did not "X" analysis.	Received by:
	Broken container:	-	Chain of Custody is missing	Date/Time:
	Sufficient sample remains			Temp./Cont. Rec./pH:
				Carrier:
				Tracking#

Login Comments: Did not receive TS2, TS3, TS4 9 Deg C

nt informed by:	Call x	Email x	Voice Mail	Date:01/20/20	Time:1145
nt informed by:	Callx	Email x	Voice Mail	Date:01/20/20	Time:1145

Proceed with analysis

Notice: This communication and any attached files may contain privileged or other confidential information. If you have received this in error, please contact the sender immediately via reply email and immediately delete the message and any attachments without copying or disclosing the contents. Thank you.

ANALYTICAL REPORT

January 27, 2020

CDIM Engineering - San Francisco, CA

Sample Delivery Group: L1181018

Samples Received: 01/18/2020

Project Number:

Description: LRTC Industrial Stormwater

402 WRIGHT AVE RICHMOND CA Site:

Report To: Bryan Starks

45 Polk Street

3rd Floor

San Francisco, CA 94102

Entire Report Reviewed By:

Jason Romer

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

21

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
TS1-E-200116 L1181018-01	5
TS2-E-200116 L1181018-02	6
TSX-E-200116 L1181018-03	7
TS3-E-200116 L1181018-04	8
TS4-E-200116 L1181018-05	9
Qc: Quality Control Summary	10
Gravimetric Analysis by Method 2540 D-2011	10
Wet Chemistry by Method 1664A	14
Wet Chemistry by Method 4500H+ B-2011	15
Metals (ICPMS) by Method 200.8	17
GI: Glossary of Terms	19
Al: Accreditations & Locations	20

Sc: Sample Chain of Custody

SAMPLE SUMMARY

ONE	LAB.	NATIONWIDE.

4	Cn	
_		_

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²T₀

²Tc

Jason Romer Project Manager

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:00

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	73000		3500	25000	1	01/19/2020 09:56	WG1413702

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		806	5560	1	01/22/2020 09:59	WG1414938

Ss

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
рН	7.57	<u>T8</u>	1	01/21/2020 09:01	WG1414224

СQс Gl

Sample Narrative:

L1181018-01 WG1414224: 7.57 at 18.4C

ΆΙ

³Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	739		20.0	100	1	01/24/2020 16:53	WG1413726
Iron	1350		15.0	100	1	01/24/2020 16:53	WG1413726
Lead	17.3		0.260	1.00	1	01/24/2020 16:53	WG1413726
Zinc	139		1.91	10.0	1	01/24/2020 16:53	WG1413726

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:20

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	28800		875	6250	1	01/20/2020 10:23	WG1413984

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		797	5490	1	01/22/2020 09:59	WG1414938

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	7.52	<u>T8</u>	1	01/21/2020 09:01	WG1414224

Cn

Sample Narrative:

L1181018-02 WG1414224: 7.52 at 18.5C

Gl

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	103		20.0	100	1	01/24/2020 17:04	WG1413726
Iron	300		15.0	100	1	01/24/2020 17:04	WG1413726
Lead	2.88		0.260	1.00	1	01/24/2020 17:04	WG1413726
Zinc	44.1		1.91	10.0	1	01/24/2020 17:04	WG1413726

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:20

L1181018

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	28600		539	3850	1	01/20/2020 10:23	WG1413984

²Tc

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		797	5490	1	01/22/2020 09:59	WG1414938

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	SU			date / time	
рН	7.54	<u>T8</u>	1	01/21/2020 09:01	WG1414224

СQс

Cn

Sample Narrative:

L1181018-03 WG1414224: 7.54 at 18.4C

7 GI

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	96.6	<u>J</u>	20.0	100	1	01/24/2020 17:07	WG1413726
Iron	307		15.0	100	1	01/24/2020 17:07	WG1413726
Lead	2.78		0.260	1.00	1	01/24/2020 17:07	WG1413726
Zinc	43.4		1.91	10.0	1	01/24/2020 17:07	WG1413726

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:49

L1181018

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	1220	J	357	2550	1	01/22/2020 21:07	WG1415496

L1181018-04 WG1415496: Reporting limit determined by filtrate volume.

³Ss

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		788	5440	1	01/22/2020 09:59	WG1414938

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	Su			date / time	
рН	7.16	<u>T8</u>	1	01/22/2020 14:00	WG1414860

Gl

Sample Narrative:

L1181018-04 WG1414860: 7.16 at 17.1C

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	ug/l		ug/l	ug/l		date / time		
Aluminum	U		20.0	100	1	01/23/2020 15:25	WG1414761	
Iron	142		15.0	100	1	01/23/2020 15:25	WG1414761	
Lead	2.84		0.260	1.00	1	01/23/2020 15:25	WG1414761	
Zinc	57.8		1.91	10.0	1	01/23/2020 15:25	WG1414761	

ONE LAB. NATIONWIDE.

Collected date/time: 01/16/20 10:57

L1181018

Gravimetric Analysis by Method 2540 D-2011

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Suspended Solids	830	<u>J</u>	364	2600	1	01/23/2020 00:36	WG1415502

²Tc

Wet Chemistry by Method 1664A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
TPH - Oil & Grease	U		806	5560	1	01/22/2020 09:59	WG1414938

Ss

Cn

Wet Chemistry by Method 4500H+ B-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	su			date / time	
рН	8.33	<u>T8</u>	1	01/22/2020 14:00	WG1414860

Sample Narrative:

L1181018-05 WG1414860: 8.33 at 16.7C

⁷Gl

	D 11	0 1:5	MDI	DDI	D.1	A 1 ·	5
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	ug/l		ug/l	ug/l		date / time	
Aluminum	44.7	J	20.0	100	1	01/23/2020 14:45	WG1414761
Iron	16.6	<u>J</u>	15.0	100	1	01/23/2020 14:45	WG1414761
Lead	0.471	J	0.260	1.00	1	01/23/2020 14:45	WG1414761
Zinc	6.81	J	1.91	10.0	1	01/23/2020 14:45	WG1414761

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1181018-01

Method Blank (MB)

(MB) R3492436-1 01/19	9/20 09:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

(OS) L1180677-01 01/19/20 09:56 • (DUP) R3492436-3 01/19/20 09:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	85000	87000	1	2.33		5

⁶Qc

L1180906-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1180906-05 01/19/20 09:56 • (DUP) R3492436-4 01/19/20 09:56

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	46000	16000	1	96.8	<u>J P1</u>	5

Laboratory Control Sample (LCS)

(LCS) R3492436-2 01/19/20 09:56

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	844000	109	85 O-115	

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1181018-02,03

Method Blank (MB)

(MB) R3492445-1 01/20/2	0 10:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

[†]Cn

(OS) L1181018-02 01/20/20 10:23 • (DUP) R3492445-3 01/20/20 10:23

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	28800	29000	1	0.866		5

(LCS) R3492445-2 01/20/20 10:23

(LCS) K3432443-2 01/20/	Spike Amount		LCS Result	LCS Rec.	Rec. Limits
Analyte	ug/l	u	ug/l	%	%
Suspended Solids	773000		820000	106	85.0-115

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1181018-04

Method Blank (MB)

 (MB) R3493381-1
 O1/22/20
 21:07

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 ug/l
 ug/l
 ug/l

 Suspended Solids
 U
 350
 2500

L1179827-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1179827-01 01/22/20 21:07 • (DUP) R3493381-3 01/22/20 21:07

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	175000	178000	1	1.70		5

[†]Cn

(OS) L1181086-02 01/22/20 21:07 • (DUP) R3493381-4 01/22/20 21:07

, ,	Original Resu	ılt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	28200	30200	1	6.85	J3	5

Laboratory Control Sample (LCS)

(LCS) R3493381-2 01/22/20 21:07

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	ug/l	ug/l	%	%	
Suspended Solids	773000	756000	97.8	85 O-115	

ONE LAB. NATIONWIDE.

Gravimetric Analysis by Method 2540 D-2011

L1181018-05

Method Blank (MB)

(MB) R3493801-1 01/23	3/20 00:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Suspended Solids	U		350	2500

(OS) L1181025-01 01/23/20 00:36 • (DUP) R3493801-3 01/23/20 00:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	ug/l	ug/l		%		%
Suspended Solids	86400	92800	1	7.14	J3	5

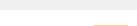
(LCS) R3493801-2 01/23/20 00:36

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 1664A

L1181018-01,02,03,04,05

Method Blank (MB)


TPH - Oil & Grease

(MB) R3492930-1 01/22/20 09:59

MB Result MB Qualifier MB

Analyte ug/l ug/l ug/l

MB Result	MB Qualifier	MB MDL	MB RDL
ug/l		ug/l	ug/l
П		725	5000

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3492930-2 01/22/20 09:59 • (LCSD) R3492930-3 01/22/20 09:59

(200) 110432330 2 0	Spike Amount	,	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
TPH - Oil & Grease	20000	20900	19400	105	97.0	64.0-132			7.44	34

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1181018-01,02,03

L1180298-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1180298-01 01/21/20 09:01 • (DUP) R3492533-2 01/21/20 09:01

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	Su	SU		%		%	
рН	7.48	7.48	1	0.000		1	

Sample Narrative:

OS: 7.48 at 18.3C DUP: 7.48 at 18.3C

Ss

L1181025-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1181025-03 01/21/20 09:01 • (DUP) R3492533-3 01/21/20 09:01

(05) [1181025-03 01/21/20	Original Result			DUP Qualifier	DUP RPD Limits
te	su	su	%		%
рН	6.81	6.82 1	0.147		1

Sample Narrative:

OS: 6.81 at 18.4C

DUP: 6.82 at 18.3C

Laboratory Control Sample (LCS)

(LCS) R3492533-1 01/21/20 09:01

Sample Narrative:

LCS: 10.03 at 16.9C

01/27/20 13:35

15 of 23

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 4500H+ B-2011

L1181018-04,05

L1181012-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1181012-03 01/22/20 14:00 • (DUP) R3493150-2 01/22/20 14:00

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	SU	SU		%		%
рН	7.73	7.73	1	0.000		1

Ss

Sample Narrative:

OS: 7.73 at 17.8C DUP: 7.73 at 17.5C

L1181513-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1181513-02 01/22/20 14:00 • (DUP) R3493150-3 01/22/20 14:00

(00) 21101010 02 01122/20	Original Result				DUP Qualifier	DUP RPD Limits
Analyte	su	su		%		%
pH	6.81	6.82	1	0.147		1

8 1

Sample Narrative:

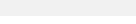
OS: 6.81 at 16C DUP: 6.82 at 18.4C

Laboratory Control Sample (LCS)

(LCS) R3493150-1 01/22/20 14:00

Sample Narrative:

LCS: 10.01 at 17.8C


ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 200.8

L1181018-01,02,03

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3493931-2 01/24/20 15:41 • (LCSD) R3493931-3 01/24/20 15:45

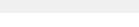
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	5120	5200	102	104	85.0-115			1.66	20
Iron	5000	5490	5430	110	109	85.0-115			1.10	20
Lead	50.0	46.4	50.1	92.8	100	85.0-115			7.72	20
Zinc	50.0	51.4	53.0	103	106	85.0-115			3.04	20

L1180944-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1180944-04 01/24/20 15:48 • (MS) R3493931-5 01/24/20 15:55 • (MSD) R3493931-6 01/24/20 15:59

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	ND	5160	5040	103	100	1	70.0-130			2.44	20
Iron	5000	ND	5510	5200	109	103	1	70.0-130			5.73	20
Lead	50.0	ND	48.3	49.9	96.5	99.7	1	70.0-130			3.25	20
Zinc	50.0	20.2	69.8	70.0	99.1	99.6	1	70.0-130			0.395	20

ONE LAB. NATIONWIDE.


Metals (ICPMS) by Method 200.8

L1181018-04,05

Method Blank (MB)

(MB) R3493530-1 01/23/20 14:35

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	ug/l		ug/l	ug/l
Aluminum	U		20.0	100
Iron	U		15.0	100
Lead	U		0.260	1.00
Zinc	U		1.91	10.0

²Tc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3493530-2 01/23/20 14:38 • (LCSD) R3493530-3 01/23/20 14:41

\ /	`	,								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	%	%	%			%	%
Aluminum	5000	5080	5080	102	102	85.0-115			0.0645	20
Iron	5000	5280	5310	106	106	85.0-115			0.452	20
Lead	50.0	50.8	52.6	102	105	85.0-115			3.49	20
Zinc	50.0	53.2	54.4	106	109	85.0-115			2.38	20

[°]Al

L1181018-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

 $(OS) \, L1181018-05 \ \ \, O1/23/20 \, 14:45 \bullet (MS) \, R3493530-5 \ \ \, O1/23/20 \, 14:51 \bullet (MSD) \, R3493530-6 \ \ \, O1/23/20 \, 14:54$

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	44.7	4980	4940	98.7	98.0	1	70.0-130			0.716	20
Iron	5000	16.6	5340	5260	107	105	1	70.0-130			1.65	20
Lead	50.0	0.471	52.2	51.5	104	102	1	70.0-130			1.41	20
Zinc	50.0	6.81	59.8	59.7	106	106	1	70.0-130			0.179	20

Sc

L1181832-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1181832-01 01/23/20 14:58 • (MS) R3493530-7 01/23/20 15:01 • (MSD) R3493530-8 01/23/20 15:04

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ug/l	ug/l	ug/l	ug/l	%	%		%			%	%
Aluminum	5000	155	5400	5130	105	99.6	1	70.0-130			5.00	20
Iron	5000	161	5580	5470	108	106	1	70.0-130			2.08	20
Lead	50.0	U	54.5	51.3	109	103	1	70.0-130			6.02	20
Zinc	50.0	9.09	62.5	61.4	107	105	1	70.0-130			1.81	20

GLOSSARY OF TERMS

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
T8	Sample(s) received past/too close to holding time expiration.

ACCREDITATIONS & LOCATIONS

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ¹⁶	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

	M				сни	AIN	OF	: Cl	JST	OD	Y R	ECC	ORD				872	D	196	
LABORATO ESC Labora 12065 Lebar (615) 773-97 Brian Ford	tory non Road, Mt. Juliet, TN 37122	INSTRUCTIONS FOR Please send analytic and the original chair bas@cdimengineering sab@cdimengineering	results, elec n-of-custody to .com, mec@co	tronic delive form to:			GeoT LOCI Repo	Tracke US ED	r EDF		ed? □ Ye	Standa Yes X Mil t weigh	X I No DL		/ weight	No	otify us of	any anoma	method and detection lim alous peaks in GC or oth any questions or problem	er scans.
CDIM CONT CDIM Engin 45 Polk Stre		Project Manager: Phone Number Sampled by: Sample date(s):	Bryan Starks 415-498-053				(2540D)	СТ-НЕМ)	77			ANAL)	/SIS R	EQUES1	ED				COC Numb	1
PROJECT I	NFORMATION						ds (SM	64A S	Pb, Zn			2							SDG numb	
Job Name: Job #: Address:	LRTC Industrial Stormwater 402 Wright Avenue, Richmond CA 94804	egylyr ddi				M 4500HB)	Total Suspended Solids (SM 2540D)	Grease (EPA 1664A SGT-HEM)	Metals- Al, Fe, F 200.8 ICP-MS)										11181	
Lab ID	Sample Identification	Sample Date	Sample Time	Sample Matrix	# of Cont.	MS) Hd	Total	Oil & O	Total I										Sample Specifi	c Notes:
	TS1-E-20016	1/16/20	1000	W	4	X	Х	X	Х			7	5.07							-01
	TS2-E-200116		1020	W		Х	X	X	X											0)
	TS3-E-200116		1049	W	10	Х	Х	X	X	1										100
1	TS4-E- 20016		1057	W	10	Х	X	X	Х						4					
	TSX-E-20016	V	1020	W	14	X	X	X	Х										Perform MS/MSD using a provided	dditional volun
											1									
																				1
				Field Fil	tered (X):		1	1.2												
	rvation Used: 1= Ice, 2= HCI; 3= H ₂ SO ₄ ; structions/QC Requirements & Co			rt with rep	oorting lin	nit an	d me	III COME	1, 4 d dete		l Ilimit	. Ana	lyze a	nd repo	rt only				e. 8 792	
Relinquished	hole	Company: Company:		Date/Time:	201700		eived		tou	Ju.	1	m		0	Comp	A CI			Date/Time:	900
Relinquished	l by:	Company:		Date/Time:	12 1/3	Rece	eived	by:			_			0	Comp	any:		Miles III	Date/Time:	

x = Samples released to a secured, locked area.

SAMPLERS NAME

SAMPLERS SIGNATURE

Bryan Starles

3+.2=.548

256-9230

1300

= Samples received from a secured, locked area

MOBILE #

DATE / TIME

RAD SCREEN: <0.5 mR/hr

	ation	
Pace Analytical National Center for Testing & Innov	ation	
Cooler Receipt Form		
	21181	518
Client: CDJENGSFCA	0 0	
Cooler Received/Opened On: 1/8/20 Temperature:	() ()	
Received By: Hailey Melşon		
Signature: MONNIM ///		
NP	Yes	No
Receipt Check List		
COC Seal Present / Intact?	/	898
COC Signed / Accurate?	/	
Bottles arrive intact?	/	198846
Correct bottles used?		
Sufficient volume sent?		
f Applicable		
VOA Zero headspace?		1000
Preservation Correct / Checked?		

Evaluated by: Jeremy Date: 1/18/20 Client: CDIENGSFCA Login #: L1181018

Non-Conformance (check applicable items)

١	Non-como mance (check applicable items)		anie items)	
	Sample Integrity		Chain of Custody Clarification	
	Parameter(s) past holding time	×	Login Clarification Needed	If Broken Container:
	Temperature not in range			Insufficient packing material around container
	Improper container type		Please specify Metals requested.	Insufficient packing material inside cooler
	pH not in range.		Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Couri
	Insufficient sample volume.		Received additional samples not listed on coc.	Sample was frozen
	Sample is biphasic.		Sample ids on containers do not match ids on coc	Container lid not intact
	Vials received with headspace.		Trip Blank not received.	If no Chain of Custody:
	Broken container		Client did not "X" analysis.	Received by:
	Broken container:		Chain of Custody is missing	Date/Time:
	Sufficient sample remains			Temp./Cont. Rec./pH:
				Carrier:
				Tracking#

Login Comments: TS3 and TS4 9 Deg C. Did not receive Additional volume for TSX-E-200116 for MS/MSD.

Client informed by:	Callx	Emailx	Voice Mail	Date:01/20/20	Time:1145	
TSR Initials: bjf	Client Conta	act:PMs				

Proceed with analysis. For TSX-E, proceed without MS/MSD study.

APPENDIX C

Upland Capping System Inspection Form

Former United Heckathorn Superfund Site Upland	
Levin Richmond Terminal, 402 Wright Ave	enue, Richmond, California
I. General Information	
Site: Former United Heckathorn Superfund Site, Inspector:	Bryan Starks and Scott Bourne
Levin Richmond Terminal Organization Address: 402 Wright Avenue, Richmond, CA Date and tim	: CDIM e of inspection: 5/29/2020 1100
Address. 402 Wright Avenue, Normond, CA Pate and time	6 of mapection. 3/29/2020 1100
II. Upland Area Concrete Cap, Gravel Cover, and Drainage Syst Note significant cracks, holes, penetrations, damage, settlement, or any exposure of unde	
riole significant cracks, notes, penetrations, damage, settlement, or any exposure or unde	riying son in any component of the capping system.
North Main Terminal (SW-3)	
	Yes No N/A Comments
Are concrete cap surfaces in adequate condition to	\square
promote effectiveness of the cap?	
·	
Are gravel cover surfaces in adequate condition to	\square
promote effectiveness of the cap?	
Is storm water drainage infrastructure (interceptors, drain inlets) in	$X \square$
adequate condition to prevent exposure of underlying soil to runoff?	— — —
Is accumulated sediment observed in the interceptors or drain inlets?	\square \square
If yes, note location and photograph.	
Are corrective actions required?	
Attach a photograph of areas requiring corrective action.	
Attacit a photograph of aleas requiring corrective action.	
Describe any recent repairs/maintenance:	
Concrete cap repaired west of SW-3. Additionally a storm wa	
installed adjacent to west side of SW-3 interceptor to remove where water previously accumulated. Piping was installed to	
into opposite site of interceptor (east side) to allow higher rete	ntion time to increase
settlement of sediment prior to discharge to Treatment Systen	1 2.
Drain inlets equipped with drain inlet filters. Drain inlet protecti	ion is inspected
regularly and replaced as needed.	
Cap generally appeared in good condition with typical surficial	cracking and seams
evident. No threat of exposure of underlying soils observed.	
Describe conditions and locations of the capping system which require atte	ntion:
Continue to monitor cracks and seams.	
Describe corrective actions required and their date(s) of implementation:	
None.	
1	

Date: 5/29/2020

tor Signature:

Former United Heckathorn Superfund Site Upland Capping System Inspection Form Levin Richmond Terminal, 402 Wright Avenue, Richmond, California North Main Terminal/United Heckathorn (SW-4) Yes No N/A Comments Are concrete cap surfaces in adequate condition to promote effectiveness of the cap? Are gravel cover surfaces in adequate condition to promote effectiveness of the cap? Is storm water drainage infrastructure (interceptors, drain inlets) in adequate condition to prevent exposure of underlying soil to runoff? Is accumulated sediment observed in the interceptors or drain inlets? X If yes, note location and photograph. X Are corrective actions required? Attach a photograph of areas requiring corrective action. Describe any recent repairs/maintenance: None. Describe conditions and locations of the capping system which require attention: Drain inlets equipped with drain inlet filters. Drain inlet protection is inspected regularly and replaced as needed. Cap generally appeared in good condition with typical surficial cracking and seams evident. No threat of exposure of underlying soils observed. Describe corrective actions required and their date(s) of implementation: Continue to monitor cracks and seams.

Inspector Signature:

Date: 5/29/2020

Former United Heckathorn Superfund Site Upland Capping System Inspection Form Levin Richmond Terminal, 402 Wright Avenue, Richmond, California North Main Terminal/United Heckathorn (SW-5) Yes No N/A Comments Are concrete cap surfaces in adequate condition to promote effectiveness of the cap? Are gravel cover surfaces in adequate condition to promote effectiveness of the cap? Is storm water drainage infrastructure (interceptors, drain inlets) in adequate condition to prevent exposure of underlying soil to runoff? X Is accumulated sediment observed in the interceptors or drain inlets? If yes, note location and photograph. X Are corrective actions required? Attach a photograph of areas requiring corrective action. Describe any recent repairs/maintenance: None. Describe conditions and locations of the capping system which require attention: Drain inlets equipped with drain inlet filters. Drain inlet protection is inspected regularly and replaced as needed. Cap generally appeared in good condition with typical surficial cracking and seams evident. Sufficient gravel. No threat of exposure of underlying soils observed. Describe corrective actions required and their date(s) of implementation: Continue to monitor cracks and seams. Gravel cover should continue to be monitored, and additional gravel placed as needed.

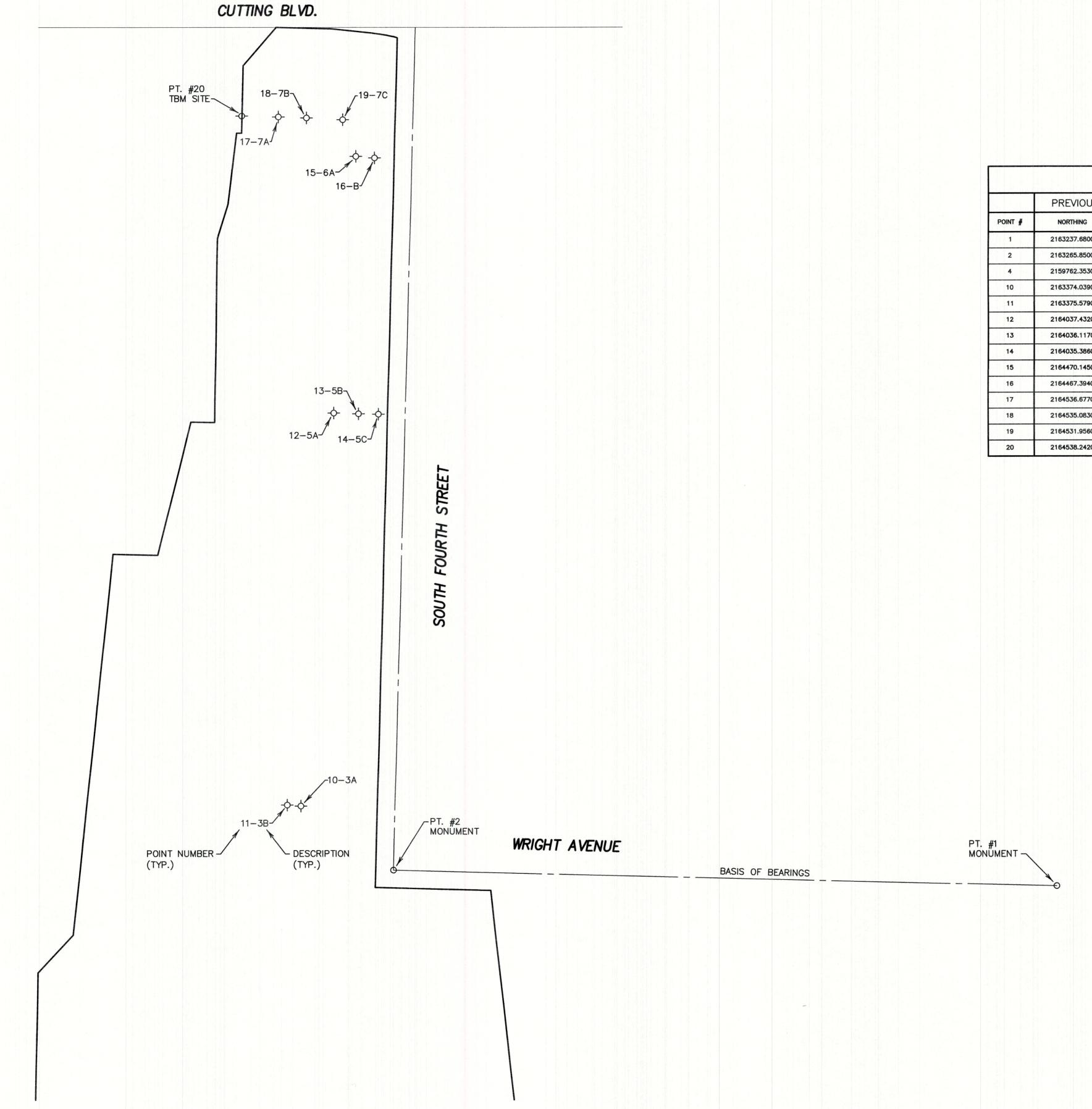
Inspector Signature:

Former United Heckathorn Superfund Site Upland Capping System Inspection Form Levin Richmond Terminal, 402 Wright Avenue, Richmond, California North Main Terminal/United Heckathorn (SW-6) Yes No N/A Comments Are concrete cap surfaces in adequate condition to promote effectiveness of the cap? Are gravel cover surfaces in adequate condition to promote effectiveness of the cap? Is storm water drainage infrastructure (interceptors, drain inlets) in adequate condition to prevent exposure of underlying soil to runoff? X Is accumulated sediment observed in the interceptors or drain inlets? If yes, note location and photograph. Are corrective actions required? Reinspection on 6/8 (see below) X Attach a photograph of areas requiring corrective action. Describe any recent repairs/maintenance: None. Describe conditions and locations of the capping system which require attention: Tidal wash or possibly seepage observed at base of pile (approximately 0.5 ft. MLLW) adjacent to City of Richmond outfall at back of Lauritzen Channel. Cap generally appeared in good condition with typical surficial cracking and seams evident. Sufficient gravel. No threat of exposure of underlying soils observed. Describe corrective actions required and their date(s) of implementation: CDIM will reinspect the area during extreme low tide on Monday, 6/8 (-1.3 at 8:39AM). Continue to monitor cracks and seams. Gravel cover should continue to be monitored, and additional gravel placed as needed.

Date: 5/29/2020

Inspector Signature:

Former United Heckathorn Superfund Site Upland Capping System Inspection Form Levin Richmond Terminal, 402 Wright Avenue, Richmond, California North Main Terminal/United Heckathorn (SW-7) Yes No N/A Comments Are concrete cap surfaces in adequate condition to promote effectiveness of the cap? Are gravel cover surfaces in adequate condition to promote effectiveness of the cap? Is storm water drainage infrastructure (interceptors, drain inlets) in adequate condition to prevent exposure of underlying soil to runoff? X Is accumulated sediment observed in the interceptors or drain inlets? If yes, note location and photograph. X Are corrective actions required? Attach a photograph of areas requiring corrective action. Describe any recent repairs/maintenance: None. Describe conditions and locations of the capping system which require attention: Cap generally appeared in good condition with typical surficial cracking and seams evident. Sufficient gravel. No threat of exposure of underlying soils observed. Describe corrective actions required and their date(s) of implementation: Continue to monitor cracks and seams. Gravel cover should continue to be monitored, and additional gravel placed as needed.


Date: 5/29/2020

Inspector Signature:

APPENDIX D

Upland Cap Survey Plat

		2020	EY: APRIL 16,	SURVI	017	EY: MAY 9, 2	SURVI	OTHERS)	SURVEY (BY C	PREVIOUS S	
	DESCRIPTION	ELEVATION	EASTING	NORTHING	ELEVATION	EASTING	NORTHING	ELEVATION	EASTING	NORTHING	POINT #
	MONUMENT		6024596.4500	2163237.6800		6024596.4500	2163237.6800		6024596.4500	2163237.6800	1
	MONUMENT		6023475.4900	2163265.8500		6023475.4900	2163265.8500		6023475.4900	2163265.8500	2
	ТВМ	-	-	-	-	-		15.164	6025316.9420	2159762.3530	4
*SEE NO	3A	12.86	6023319.3430	2163374.0310	12.90	6023319.3392	2163373.9523	12.900	6023319.3450	2163374.0390	10
*SEE NOT	3B	12.99	6023296.0975	2163375.5358	13.01	-	- 1	13.010	6023296.1160	2163375.5790	11
	5A	13.23	6023374.6909	2164037.4407	13.22	6023374.5955	2164037.3606	13.229	6023374.6750	2164037.4320	12
	5B	13.16	6023416.4733	2164036.1543	13.16	6023416.4014	2164036.0760	13.160	6023416.5070	2164036.1170	13
	5C	12.27	6023450.0572	2164035.3756	12.27	6023450.0066	2164035.3260	12.270	6023450.0640	2164035.3860	14
	6A	11.55	6023411.8330	2164470.1247	11.55	6023411.7101	2164470.1234	11.550	6023411.8380	2164470.1450	15
	6B	10.88	6023443.1903	2164467.3840	10.89	6023443.1350	2164467.4160	10.890	6023443.1740	2164467.3940	16
	7A	12.20	6023281.0001	2164536.6518	12.20	6023280.8983	2164536.6437	12.200	6023281.0150	2164536.6770	17
	7B	13.61	6023328.3980	2164535.0669	13.61	6023328.2973	2164535.0237	13.605	6023328.3880	2164535.0830	18
	7C	13.50	6023389.6385	2164531.9753	13.50	6023389.5164	2164531.9398	13.500	6023389.6420	2164531.9560	19
	TBM SITE	11.53	6023219.0670	2164538.2420	11.53	6023219.0670	2164538.2420	11.532	6023219.0670	2164538.2420	20

NOTES:

1. ORIGINAL BASIS OF BEARINGS AND ELEVATION (DONE BY OTHERS): HORIZONTAL CONTROL IS BASED ON A MODIFIED CALIFORNIA COORDINATE SYSTEM. THE BASIS OF BEARING FOR THIS MAP IS BETWEEN TWO BRASS DISKS WITHIN STANDARD CITY MONUMENT WELLS LOCATED AT THE INTERSECTIONS OF WRIGHT AVENUE WITH SOUTH 4TH STREET AND SOUTH 8TH STREET THE COORDINATE VALUES AT SOUTH 4TH STREET = NORTHING 2163265.8500, EASTING 6023475.4900 THE COORDINATE VALUES AT SOUTH 8TH STREET = NORTHING 2163237.6800, EASTING 6024596.4500 VERTICAL CONTROL IS BASED ON TIDAL BENCH MARK STATION DISK STAMPED BM 2 1932, DESIGNATION BEING TIDAL 2 STA III 22 DESCRIBED AS A DISK SET VERTICALLY IN THE GRANITE FOUNDATION AT THE NORTHERN MOST ENTRANCE ON THE WEST SIDE OF THE OLD FORD PLANT. THE DISK HAVING A ELEVATION OF 4.902 FEET MEAN LOWER LOW WATER (MLLW).

2. HORIZONTAL CONTROL WAS ESTABLISHED USING THE PREVIOUS SURVEY'S CONTROL MONUMENTS DESIGNATED AS POINTS 1 AND 2.

3. VERTICAL CONTROL WAS ESTABLISHED USING THE ONSITE TEMPORARY BENCH MARK (TBM) DESIGNATED AS POINT 20, BEING THE SW CORNER OF A CONCRETE VAULT WITH AN ELEVATION OF 11.53.

4. POINT #11-3B WAS LOCATED UNDER EQUIPMENT, NORTHING AND EASTING WAS NOT ESTABLISHED. ELEVATION WAS TAKEN AT THE APPROXIMATE LOCATION. (2017 SURVEY)

5. POINTS #11-3B AND #10-3A WERE DESTROYED DURING CONCRETE REPLACEMENT. SET CHISELED CROSSES AT THE APPROXIMATE ORIGINAL LOCATION. (2020 SURVEY)

ENGINEERING • PLANNING • SURVEYING 847 N. CLUFF AVENUE, SUITE A2, LODI, CALIFORNIA 95240 (209) 334-6613

LEVIN RICHMOND TERMINAL

TOPOGRAPHIC SURVEY

RICHMOND, CALIFORNIA APRIL, 2020

REV. NO.	DESCRIPTION	DATE	SCALE: AS NOTED	BENCH MARK: #20 EL: 11.532	SHEET				
			DRAWN BY: SM	DESCRIPTION: SW CORNER OF	1				
			DESIGNED BY:	CONCRETE STRUCTURE FOR SW#7, BASED ON PREVIOUS	OF 1 SHEETS				
			CHECKED BY: JM	SURVEY, DONE BY OTHER.	JOB NO. 1749				
		AS BUILT BY:							